• 제목/요약/키워드: Semiconducting carbon

검색결과 80건 처리시간 0.03초

옥타데실아민(octadecylamine)을 이용한 탄소나노튜브의 선택적 분산 (Selective Dispersion of Carbon Nanotubes by Octadecylainine)

  • 이광훈;박훈;채희백
    • 한국산학기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.27-32
    • /
    • 2006
  • 옥타데실아민을 사용하여 HiPco 단층벽 탄소나노튜브 중에서 반도체-탄소나노튜브를 분리하였다. 산 처리한 탄소나노튜브를 옥타데실아민과 혼합하고 $120^{\circ}C$에서 120시간동안 가열하였다. 옥타데실아민은 반도체-탄소나노튜브의 벽에 선택적으로 물리흡착되었다. 옥타데실아민과 반응시킨 탄소나노튜브를 최종적으로 테트라하이드로퓨란에 넣고 초음파로 분산시켰다. 금속-탄소나노튜브와 옥타데실아민이 흡착되지 않은 반도체-탄소나노튜브는 서로 엉겨 붙어서 침전되었다. 반면, 옥타데실아민이 물리흡착된 반도체-탄소나노튜브는 분산 용액의 상청액(supernatant)에 남아 있게 된다. 514 nm와 1064 nm의 라만분광법으로 측정한 결과, 상청액에는 반도체-탄소나노튜브가 94 %이상이, 침전물에는 50 % 정도 존재함을 알게 되었다.

  • PDF

Fabrication of CNT Flexible Field Emitters and Their Field Emission Properties

  • Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been studied as an ideal material for field emitters due to the high aspect ratio, excellent electrical property and good mechanical strength. There were many reports on CNT emitters fabricated on rigid substrates, but rare reports about CNT flexible field emitters. Recently, we considered that CNTs can be a good candidate for a flexible field emitter material because of their excellent Young's modulus and elasticity, which could not be achieved with metal tips or semiconducting nanowire tips. In this work, we demonstrated the CNT flexible field emitters fabricated by a simple method and studied the field emission properties of the CNT flexible field emitters under various bending conditions. The flexible field emitters showed stable and uniform emission characteristics. Especially, there is no remarkable change of the field emission properties at the CNT flexible field emitters according to the bending conditions. The CNT flexible field emitters also exhibited a good field emission performance like the low turn-on field and high emission current. Therefore, we suggest that the CNT flexible emitters can be used in many practical applications under different bending conditions.

  • PDF

Spray coating of electrochemically exfoliated graphene/conducting polymer hybrid electrode for organic field effect transistor

  • Kim, Youn;Kwon, Yeon Ju;Hong, Jin-Yong;Park, Minwoo;Lee, Cheol Jin;Lee, Jea Uk
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.399-405
    • /
    • 2018
  • We report the fabrication of organic field-effect transistors (OFETs) via spray coating of electrochemically exfoliated graphene (EEG) and conducting polymer hybrid as electrodes. To reduce the roughness and sheet resistance of the EEG electrodes, subsequent coating of conducting polymer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)) and acid treatment was performed. After that, active channel layer was developed by spin coating of semiconducting poly(3-hexylthiophene) on the hybrid electrodes to define the bottom gate bottom contact configuration. The OFET devices with the EEG/PEDOT:PSS hybrid electrodes showed a reasonable electrical performances (field effect mobility = $0.15cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^2$, and threshold voltage = -1.57V). Furthermore, the flexible OFET devices based on the Polydimethlsiloxane (PDMS) substrate and ion gel dielectric layer exhibited higher electrical performances (field effect mobility = $6.32cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^3$, and threshold voltage = -1.06V) and excellent electrical stability until 1000 cycles of bending test, which means that the hybrid electrode is applicable to various organic electronic devices, such as flexible OFETs, supercapacitors, organic sensors, and actuators.

Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide

  • Oh, Won-Chun;Chen, Ming-Liang
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.159-164
    • /
    • 2008
  • Two kinds of CNT/TiO2 composite photocatalysts were synthesized with multi-walled carbon nanotubes (MWCNTs) and titanium(IV) n-butoxide (TNB) by a MCPBA oxidation method. Since MWCNTs had charge transfer and semiconducting, the CNT/TiO2 composite shows a good photo-degradation activity. The XRD patterns reveal that only anatase phase can be identified for MCT composite, but the HMCT composite synthesized with HCl treatment was observed the mixed phase of anatase and rutile. The EDX spectra were shown the presence as major elements of Ti with strong peaks. From the SEM results, the sample MCT and HMCT synthesized by the thermal decomposition with TNB show a homogenous sample with only individual MWCNTs covered with TiO2 without any jam-like aggregates between CNTs and TiO2. From the photocatalytic results, we could be suggested that the excellent activity of the CNT/TiO2 composites for organic dye and UV irradiation time could be attributed to combination effects between TiO2 and MWCNTs with plausible photodegradation mechanism.

Hydrophone 응용을 위한 Piezoceramic/Polymer 0-3 Composite의 분극 개선 (A Poling Study on a Piezoceramic/Polymer 0-3 Composites for Hydrophone Applications)

  • 이수호;조현철;사공건;설수덕;구할본
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.349-352
    • /
    • 1989
  • Poling piezoelectric ceramic-polymer composites with 0-3connectivity is difficult because of the high dielectric constant of most of the ferroelectric filler materials, and the high resistivity of the polymer matrix. To aid in poling this type of composite, conductivity of the polymer phase can be controlled by adding small amount of a semiconductor phase such as germanium, carbon or silicon. In this study, flexible piezoelectric composites of $PbTiO_3$ powder and Eccogel polymer were developed using small amounts of a semiconducting phase. These composites were poled rapidly at low voltages, resulting in properties superior to composites prepared without a conductive phase. The effect of addition of various conductive phase with different volume percentage on the dielectric and piezoelectric properties of the composite are discussed here.

  • PDF

초전도 케이블에서 반합성지의 전기적 특성에 관한 설계 인자 연구 (The Study of Design Factors on the Main Electrical Properties of the Tape Insulation)

  • 안드레프;김수연;이인호;김도운;신두성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.286-289
    • /
    • 2002
  • The partial pischarge(PP) process in synthetic laminated paper insulation was studied at cryogenic condition using different types of the test samples(flat and tube type). The influence of semiconducting carbon paper was also evaluated by studying the electrical properties of superconducting cable.

  • PDF

XPS STUDY ON SN-DOPED DLC FILMS PREPARED BY RF PLASMA-ENHANCED CVD

  • Inoue, Y.;Komoguchi, T.;Nakata, H.;Takai, O.
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.519-524
    • /
    • 1996
  • We synthesized semiconducting Sn-doped diamondlike carbon films by rf plasma-enhanced chemical vapor deposition using an organotin compound as a dopung gas source. XPS quan-titative analysis for the deposited films after 60 s argon ion etching revealed that Sn concen-tration increased with the partial pressure of the organotin compound in the reactant gas. In C 1s spectra, there was a component due to C-Su bond which had a negative chemical shift. C 1s spectra also indicated that the deposited films were relatively $sp^2$ rich. The chemical shift of the Sn-C bond in Sn $3d_{5/2}$ spectra was about +1.7 eV. The electrical resistivity and the optical transmittance were also investigated.

  • PDF

Characterization of SWCNT Field Effect Transistor via Edison Simulation

  • Piao, Mingxing;Lee, Sang-Jin;Na, In-Yeob
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.260-263
    • /
    • 2013
  • A semiconducting single-walled carbon nanotube (SWCNT) field-effect transistor (FET) in a top-gate model was constructed. The effect of different high-${\kappa}$ dielectric materials ($Al_2O_3$, $HfO_2$ and HfSiON) and various temperatures with a wide range from 50K to 500K on the performance of such nominal device were investigated. Several key device parameters including the on/off ratio of the current, transconductance ($g_m$), subthreshold swing, and carrier mobility were used to evaluate the device performance. The simulated results fit well with the experiment results previously published.

  • PDF

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W.;Kim, J. S.
    • Applied Science and Convergence Technology
    • /
    • 제27권4호
    • /
    • pp.61-64
    • /
    • 2018
  • The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

Photo-triggered Theranostic Nanoparticles in Cancer Therapy

  • Abueva, Celine DG.
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2021
  • In cancer therapy, it is often desirable to use precision medicine that involves treatments of high specificity. One such treatment is the use of photo-triggered theranostic nanoparticles. These nanoparticles make it possible to visualize and treat tumors specifically in a controlled manner with a single injection. Several novel and powerful photo-triggered theranostic nanoparticles have been developed. These range from small organic dyes, semiconducting and biopolymers, to inorganic nanomaterials such as iron-oxide or gold nanoparticles, carbon nanotubes, and upconversion nanoparticles. Using photo-triggered theranostic nanoparticles and localized irradiation, complete tumor ablation can be achieved without causing significant toxicity to normal tissue. Given the great advances and promising future of theranostic nanoparticles, this review highlights the progress that has been made in the past couple of years, the current challenges faced and offers a future perspective.