• Title/Summary/Keyword: Semiconducting $BaTiO_3$ ceramics

Search Result 27, Processing Time 0.018 seconds

A Study on Fabrication of Semiconducting $BaTiO_3$ Ceramics at Lower Sintering Temperature (저온 소결에 의한 반도성 $BaTiO_3$ 세라믹스 제조에 관한 연구)

  • 김준수;김흥수;권오성;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.183-191
    • /
    • 1996
  • For the fabrication of semiconducting BaTiO3 ceramics at lower sintering temperature BN was selected as a sintering aid and the microsturcture of semiconducting BaTiO3 ceramics and PTCR characteristics by their microstructural changes were investigated. by adding BN to 0.1 mol% Sb2O3-doped BaTiO3 ceramics the sintering temperature showing semiconducting BaTiO3 ceramics was reduced by 16$0^{\circ}C$ from 130$0^{\circ}C$ to 114$0^{\circ}C$ and the specific resistivity ratio was increased as the amount of BN was increased.

  • PDF

Sintering and Electrical Characteristics of Semiconducting $BaTiO_3$ Ceramics with Addition of $BaB_2O_4$ ($BaB_2B_4$ 첨가에 따른 반도성 $BaTiO_3$ 세라믹스의 소결 및 전기적 특성)

  • 허영우;이준형;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1038-1044
    • /
    • 1996
  • The variations of sintering and electrical characteristics of semiconducting BaTiO3 ceramics with sintering agents added were investigated comparing the case of BaB2O4 addition to BN and TiO2 addition. When BaB2O4 added in BaTiO3 ceramics the densitifcation of specimen could be acheived more easily and recvealed the better PTCR characteristics than BN and TiO2 addition. As increase of addition of BaB2O4 in BaTiO3 spec imens the slope of resistivity jump also increased but the temperature of maximum resistivity decreased, It was supposed that addition of BaB2O4 led to increase of Ns (acceptor state density) value at grain boundaries.

  • PDF

The Effects of SiO2 Addition and Cooling Rate Change by Sol-gel Processing in Semiconducting BaTiO3 Ceramics (반도성 $BaTiO_3$ 세라믹스의 Sol-gel법에 의한 $SiO_2$ 첨가 및 냉각속도 효과)

  • 권오성;정용선;윤영호;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1301-1310
    • /
    • 1996
  • Generally it requires high sintering temperatures more than 135$0^{\circ}C$ to make semiconductive BaTiO3 ceramics. Also it is very difficult to achieve a homogeneous mixing in solid-state reaction method. Therefore the liquid phase distributed to non-uniform dilute the characteristics of PTCR. In order to improve the uniformity this study is used the sol-gel coating method. Using this method we studied the new manufacturing process that had a high reproducibility and mass production capability. Tetraethyl orthosilicate (TEOS) was used as a source of Si. The semiconductive BaTiO3 ceramics which was produced by sol-gel method for the SiO2 addition and sintered between 124$0^{\circ}C$ and 130$0^{\circ}C$ showed almost same resistivity at room temperature among 125$0^{\circ}C$ and 130$0^{\circ}C$. As the results We could be sintered the semiconducting BaTiO3 ceramics at lower temperature even at 125$0^{\circ}C$ maintaining the same specific resistivity ratio ($\rho$max/$\rho$min) at 130$0^{\circ}C$. The specific resistivity both below and above the Curie temperature were increased by slow cooling and the steepness of the plots in the reasion of transition from low to high resistance increased as the cooling rate decreased.

  • PDF

Electrical and Chemical Characteristics of the Grain Boundaries of Semiconducting $BaTiO_3$ Ceramics Prepared with Surface-Coated Powders (표면 코팅된 분말을 이용하여 제조된 반도성 $BaTiO_3$ 소결체의 입계 화학 및 전기적 특성)

  • 박명범;김정돈;조남희
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.338-344
    • /
    • 2000
  • Grain boundary chemistry and electrical characteristics of polycrystalline BaTiO3 ceramics, which were prepared with sol-gel surface-coated semiconducting powders, were investigated. Mn ions were coated on the powder surface by sol-gel coating-techniques. The additives coated on the surface of the powders were observed to be present near the grain boundaries of the ceramics. The ceramics exhibit the PTCR characteristics with a resistivity jump ratio(Pmax/Pmin) of about 2$\times$103. With raising the temperature from room temprature to 20$0^{\circ}C$, the oxidation state of the Mn ions varied from Mn3+ to Mn2+ in the coating layers. Near the grain boundaries an excessive negative charge layer of about 20nm was formed.

  • PDF

The Effect of Ti Compositions on (Ba, Sr) $TiO_3$ Semiconducting Ceramics (Ti 조성이 (Ba, Sr) $TiO_3$계 반도체 세라믹에 미치는 영향)

  • 박금덕;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 1985
  • (Ba0.8. Sr0.2) $TiO_3$ semiconducting ceramic with and without Ti-excess composition were prepared by various sintering temperature. The effects of Ti compositions on the samples were discussed in terms of color micro-structure resistivity at room temperature and the positive temperature coefficient resistivity(PTCR). The 1.02mol Ti-excess composition provides better PTCR properties and has uniform micrositructures with 5-7${\mu}{\textrm}{m}$.

  • PDF

PTCR Effects of Semiconducting (Ba1-xPbx)TiO3 Ceramics with 0.5 mol% Pb5Ge3O11 (0.5 mol% Pb5Ge3O11가 첨가된 반도성 (Ba1-xPbx)TiO3 세라믹스의 PTCR 효과)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.525-530
    • /
    • 1991
  • The effects of 0.15mol% Y2O3 doped semiconducting (Ba1-xPbx)TiO3 ceramics with 0.5 mol% Pb5Ge3O11 as sintering additives have been investigated as function of Pb contents (from 0.05 mol to 0.3 mol) and sintering temperatures (from 1050$^{\circ}C$ to 1200$^{\circ}C$). As the Pb content increases in the (Ba1-xPbx)TiO3 system, the size and resistance of the grain increase but the capacitance of the grain boundary decreases due to the formation of liquid phase during the sintering. And with increasing the sintering temperatures, the resistance of the grain decreases but the capacitance of the grain boundary increases. The PTCR effects decrease with increasing the Pb content and the sintering temperature.

  • PDF

Studies on the Electrical Properties of Semiconducting $BaTiO_3$ by Changing Sintering Atmosphere (분위기 변화에 따른 반도성 $BaTiO_3$ 전기적 특성 연구)

  • 최기영;한응학;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.3
    • /
    • pp.179-188
    • /
    • 1991
  • The semiconducting BaTiO3 ceramics used in this study were sintered in the reducing atomosphere(hydrogen gas) and neutral atmosphere(nitrogen gas), then were heat-treated in air to vary defect concentrations. In this experiment, the correlations between the composition analysis and electrical characteristics of these samples were investigated. When the BaTiO3 ceramics were sintered in N2 atmosphere, it was observed that the Ba contents near the interface were lower than that of the grain center, and these samples showed superior PTCR effects. From analysis of the resistivities of grains and grain boundaries by CIRM(Complex Impedance Resonance Method), it was confirmed that the PTCR effects were caused by the resistivity of grain boundaries. And from measurement of the capacitance at each temperature, the samples sintered in N2 atmosphere show the increase of room temperature resistance and the decrease of capacitance as a result of the increase of the charge depletion layers. This phenomenon agrees well with the cation deficiencies in the analytical results.

  • PDF

Low-Temperature Sinterbility of Semiconducting $BaTiO_3$ Ceramics with $Pb_5Ge_3O_11$ Additives ($Pb_5Ge_3O_11$에 의한 반도성 $BaTiO_3$ 세라믹스의 저온소결성)

  • 윤상옥;정형진;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.359-364
    • /
    • 1991
  • The effects of Pb5Ge3O11 on the sinterbility and lattice variation of the semiconducting 0.15 mol% Y2O3 doped BaTiO3 have been investigated as functions of additive contents (from 0.25 mol% to 2.5 mol%) and sintering temperatures (from 110$0^{\circ}C$ to 130$0^{\circ}C$). As the amount of Pb5Ge3O11 increases, the sinterbility of BaTiO3 increases abruptly at around 115$0^{\circ}C$. During the sintering, the most of Pb+2 ions in additives penetrate into BaTiO3 lattices and Ge+4 ions present at grain boundaries. Therefore the c lattice of the BaTiO3 increases largely and then the tetragonality increases due to the diffusion of the Pb+2 ions.

  • PDF