• Title/Summary/Keyword: Semi-infinite Beam

Search Result 18, Processing Time 0.033 seconds

Measurement of Vibration Intensity of a Semi-Infinite Beam Using the Principle of Reciprocity (가역성 원리를 이용한 반무한보의 진동 인텐시티 측정)

  • 양귀봉;길현권;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1073-1077
    • /
    • 2001
  • The objective of this paper is to apply an experimental method based on the principle of reciprocity to measuring the structural intensity. Since only one accelerometer is used in this method it has the advantages of shortening measurement time. reducing accelerometer phase error. overcoming the limitation that the situation should be stationary during the experiment. It has been used to measure the vibration intensity of an infinite beam (beam with damped ends) and a semi-infinite beam (beam with simply supported and damped ends). Results showed that the experiment method based on the principle of reciprocity can be effectively used to measure the structural intensity.

  • PDF

A Study on Structural Intensity Measurement of Semi-infinite Beam (반무한보의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.43-53
    • /
    • 1997
  • This paper investigated the practical use for measuring the structural intensity (power flow per width of cross section) in a uniform semi-infinite beam in flexural vibration. The structural intensity is obtained as a vector at a measurement point, One-dimensional structural intensity can be obtained from 4-point cross spectral measurement, or 2-point measurement on the assumption of far field. The measurement errors due to finite difference approximation and phase mismatch of accelerometers are examined. For precise measurements, it would be better to make the value of k$\delta$(wave number x space between accelerometers) between 0.5 and 1.0. Formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained from 2- and 4-point measurement performed at 200mm (near field) and 400mm (far field) apart from excitation point in random excitation. the results are compared with the theoretical values and measured values of input power spectrum in order to verify the accuracy of structural intensity method, 2-point method is suggested as the practical structural intensity method.

  • PDF

Measurements of In-Plane Vibration Intensity of a Semi-Infinite Beam (반무한보의 면내 진동인텐시티 측정)

  • 김창렬;길현권;전진숙;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1185-1188
    • /
    • 2002
  • The objective of this paper is to apply experimental methods to measure the in-plane vibration intensity of a semi-infinite beam. Two experimental methods have been implemented to measure the in-plane vibration intensity of the beam. The first method is the cross spectral intensity measurement method using two accelerometers. The second method is the frequency response method using the only one acrelerometer. It has the advantages of shortening measurement time and reducing accelerometer phase error. Experimental results showed that those experimental methods can be effectively used to measure the structural In-plane vibration intensity.

  • PDF

The Theoretical Study of the Measuring Thermal Diffusivity of Semi-Infinite Solid Using the Photothermal Displacement

  • Jeon, PiIsoo;Lee, Kwangjai;Yoo, Jaisuk;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1712-1721
    • /
    • 2004
  • A method of measuring the thermal diffusivity of semi-infinite solid material at room temperature using photothermal displacement is proposed. In previous works, within the constant thickness of material, the thermal diffusivity was determined by the magnitude and phase of deformation gradient as the relative position between the pump and probe beams. In this study, however, a complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of parameters, such as, radius and modulation frequency of the pump beam and the thermal diffusivity, was studied. We propose a simple analysis method based on the zero -crossing position of real part of deformation gradient and the minimum position of phase as the relative position between two beams. It is independent of parameters such as power of pump beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Wave Transmission Analysis of Beam/Plate Point-Coupled Structures (보/평판 점연성구조의 파동전달해석)

  • 서성훈;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

A Theoretical Study for the Thermal Diffusivity Measurement of Semi-Infinite Solid Using Photothermal Displacement Method (광열변위법을 이용한 반무한 고체의 열확산계수 결정에 대한 이론적 연구)

  • Jeon, Pil-Soo;Lee, Kwang-Jai;Yoo, Jai-Suk;Park, Young-Moo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1747-1755
    • /
    • 2002
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in semi-infinite solid materials. The influence of the parameters, such as radius and modulation frequency of the heating beam and the thermal diffusivity, was studied. Usually, thermal diffusivity was determined by the deformation angle and phase angle as the relative position between the heating and probe beams. In this study, we proposed the simple analysis method based on the real part of deformation gradient as the relative position between two beams. It is independent in the parameters such as power of heating beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Dynamic response of an elastic bridge loaded by a moving elastic beam with a finite length

  • Cojocaru, Eugenia C.;Irschik, Hans
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.343-363
    • /
    • 2010
  • The present paper is concerned with vibrations of an elastic bridge loaded by a moving elastic beam of a finite length, which is an extension of the authors' previous study where the second beam was modeled as a semi-infinite beam. The second beam, which represents a train, moves with a constant speed along the bridge and is assumed to be connected to the bridge by the limiting case of a rigid interface such that the deflections of the bridge and the train are forced to be equal. The elastic stiffness and the mass of the train are taken into account. The differential equations are developed according to the Bernoulli-Euler theory and formulated in a non-dimensional form. A solution strategy is developed for the flexural vibrations, bending moments and shear forces in the bridge by means of symbolic computation. When the train travels across the bridge, concentrated forces and moments are found to take place at the front and back side of the train.