• Title/Summary/Keyword: Semi-dry

Search Result 241, Processing Time 0.023 seconds

Effect of Indigenous Herbs on Growth, Blood Metabolites and Carcass Characteristics in the Late Fattening Period of Hanwoo Steers

  • Kim, D.H.;Kim, K.H.;Nam, I.S.;Lee, S.S.;Choi, C.W.;Kim, W.Y.;Kwon, E.G.;Lee, K.Y.;Lee, M.J.;Oh, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1562-1568
    • /
    • 2013
  • This study was conducted to evaluate the effects of indigenous herbal supplements on growth, blood metabolites and carcass characteristics in the late fattening period of Hanwoo steers. In a 6 month feeding trial, thirty Hanwoo steers ($647{\pm}32$ kg) were allotted to one of 5 treatment groups, control (basal diet contained lasalocid), licorice, clove, turmeric and silymarin, with six steers per pen. All groups received ad libitum concentrate and 1 kg rice straw/animal/d throughout the feeding trial. Blood samples were collected at the beginning, middle, and the end of the experiment and the steers were slaughtered at the end. Blood glucose, triglyceride, total protein, and albumin concentrations were higher in the turmeric treatment compared with other treatments. Blood urea nitrogen and creatinine concentrations were highest (p<0.003 and p = 0.071, respectively) in steers treated with silymarin. Alanine aminotransferase activity was lower (p<0.06) for licorice and silymarin compared with the control group. There were no alterations in serum aspartate aminotransferase and gamma glutamyltransferase activities as a consequence of herb treatments (p = 0.203 and 0.135, respectively). Final body weight, body weight gain, average dairy gain and dry matter intake were not significantly different among treatments. Yield grade, marbling score and quality grade were higher for silymarin group than those of the control group (p<0.05). Therefore, the results suggest that silymarin can be used an effective dietary supplement as an alternative to antibiotic feed additive and a productivity enhancer, providing safe and more consumer acceptable alternative to synthetic compounds during the late fattening period of steers.

Changes of the Microbial Population and Determination of Pepsin and In vitro Digestibilities of Pasteurized and Cured Food Wastes (살균${\cdot}$숙성된 남은 음식물의 공정별 미생물 분포 및 Pepsin과 In vitro 소화율 평가)

  • Baik, Y. H.;Ji, K. S.;Kwak, W. S.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.125-134
    • /
    • 2005
  • This study was conducted to evaluate changes of microbial population, pepsin digestibility of protein and in vitro digestibility of nutrients of food waste mixture pasteurized and cured using a rotary drum system. A pasteurization process (30 min at $80^{\circ}C$) tended to decrease microbial populations and eliminated (P<0.05) molds in food waste mixture. The subsequent curing process increased (P<0.05) lactic acid bacteria counts which were reduced by the heated pasteurization process. The heated pasteurization process decreased (P<0.05) pepsin digestibility of protein in food waste mixture. In vitro digestibilities of dry matter and organic matter were high in the order of bakery by-product, wheat bran, food waste (=barley bran). These results indicate that food waste mixture pasteurized and cured using a semi-dehydration rotary drum system may be an effective animal feed resource.

  • PDF

Evaluation of Conventional Prediction Model for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchanger (수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가)

  • Sohn, Byong-Hu;Wi, Ji-Hae;Han, Eun-Seon;Lim, Jee-Hee;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.813-824
    • /
    • 2010
  • Thermal conductivity of soils is one of the most important parameters to design horizontal ground heat exchangers. It is well known that the thermal conductivity of soil is strongly influenced by its density and water content because of soil's particulate structure. This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data available in the literature. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state sands. It came out that the model developed by Cote and Konrad gave the best overall prediction for unsaturated sands available in the literature. Also, a parametric analysis is conducted to investigate the effect of thermal conductivity and water content, soil type on the horizontal ground heat exchanger design. The analysis shows that a required pipe length for the horizontal ground heat exchanger is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that the dimension of the horizontal ground heat exchanger can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.

  • PDF

Ecological Characteristics and Distribution of Native Trillium tschonoskii in Ulleung Island (울릉도 자생 큰연령초의 분포와 자생지의 생태적 특성)

  • Ahn, Young-Hee;Lee, Sung-Jae;Lee, Sang-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.2 s.149
    • /
    • pp.157-163
    • /
    • 2007
  • Trillium tschonoskii Maxim. is a kind of 64 endangered plant species designated by the Ministry of Environment in Korea. It is very a rare native plant throughout the country. Therefore, this study was conducted to investigate the native T. tschonoskii in Ulleung Island for their distribution and ecological characteristics. They were mostly distributed valley, mid-slope of the mountain from 186 to 458 m altitude. They had a little low light conditions as they faced west, north west, south west, south-south west, north-north east and east-east north. They were provided with slightly humid condition. Aerial humidities of these quadrates were variable as 21.5-71%. They were located on the variable slopes of 5 to 43 degrees. Soil humidity was slightly dry. Native sites were semi-shaded because tree layer such as Tilia insularis, Zelkova serrata, okamotoanum etc.and sub-tall tree layer such as Ligustrum foliosum, Comellia japonica, Tilia insularis, Callicarpa japonica and so on were grown near by. Woody plants such as A. Okamotoanum, Sorbus commixta, Fagus japonica var. multinervis etc. were frequently observed. These environmental conditions were suitable that T. tschonoskii grows up naturally because of high Percentage as 52.78% of blooming individuals in this study. These native sites were classified with three communities, T. tschonoskii-Majanthemum dilatatum community, T. tschonoskii-Anthriscus sylvestris community and T. tschonoskii-Hepatica maxima community in accordance with altitude and aerial humidity. The best way ffr the preservation of T. tschonoskii habitats and maintainance of its recent population is maintained in recent environmental condition and ecological condition without any management by human-being.

A Study on $SO_2$Removal in Flue Gas by Semidry Flue Gas Desulfurization Method (반건식 배연탈황법에 의한 연소 페가스 중 $SO_2$제거에 관한 연구)

  • Song, Ho-Cheol;Lee, Yun-Gi;Park, Jin-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.273-280
    • /
    • 1998
  • The investigation on the removal of 502 gas fro.In flue gas which causes serious air pollution was made by using a semi dry flue gas desulfurization method. Experiments were carried out as a function of process variables which would affect SO2 removal efficiency. Process variables inclilded SO2 inlet concentration, inlet temperature of simulated flue gas, sorbent weight fraction, and volume flow rate of sorbent slurry. In this study, used sorbent was Ca(OH), and simulated flue gas was prepared by mixing pure SO2 gas with air. Experimental conditions were varied at 140~18$0^{\circ}C$ of inlet temperature of the simulated flue gas, 500~2000ppm of inlet SO2 concentration, 0.4~1.0% of sorbent concentration, and 10~25 mL/min of flow rate of sorbent slurry. Among process variables, inlet concentration of SO2 was found to be the most significant factor to affect SO2 removal efficiency. The concentration of Ca(OH2) had a lower effect on SO2 removal than SO2 inlet concentration removal amount was 0.108, 0.141, 0.153 g SO2/g Ca(OH)2 respectively- As 200 mmol of HNO3 was added into slurry to improve removal efficiency, initial pH was maintained and solubility of slurry increased, so that removal efficiency elevated. Adding over 200 mmol of HNO3 into slurry caused removal efficiency lower. Therefore it could be concluded the optimum was 200 mmol of HNO3 input.

  • PDF

Elucidating Energy Requirements in Alternative Methods of Robo Production

  • Akinoso, Rahman;Are, Oluwayemisi Teslima
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.128-137
    • /
    • 2018
  • Purpose: This study was designed to elucidate the energy-utilization patterns for five methods of robo production. Methods: Robo (fried melon cake) was produced using five different methods, and the energy used for each unit operation was calculated using standard equations. The sensory attributes of the products were determined by panelists. Data were analyzed using descriptive analysis and analysis of variance at p < 0.05. Results: The energy demands for processing 2.84 kg of melon seed into robo (fried melon cake) using processes 1 (traditional method), 2, 3, 4, and 5 (improved methods) were 50,599.5, 21,793.6, 20,379.7, 21,842.9, and 20,429.3 kJ, respectively. These are equivalent to energy intensities of 1,7816.7, 7,673.8, 7,175.9, 7,691.2, and 7,193.4 kJ/kg, respectively. For the traditional process, the frying operation consumed the highest energy (21,412.0 kJ), and the mixing operation consumed the lowest energy (675.0 kJ). For the semi-mechanized processes, the molding operation consumed the highest energy (6,120.0 kJ), and the dry milling consumed the lowest energy (14.4 kJ). Conclusions: The energy-consumption patterns were functions of the type of unit operation, the technology involved in the operations, and the size of the equipment used in the whole processing operation. Robo produced via the milling of dried melon seed before oil expression was rated highest with regard to the aroma and taste quality, as well as the overall acceptability of the sensory evaluation, and required the lowest energy consumption. Full mechanization of the process line has potential for further reduction of the energy demand.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Numerical Study for the Optimal Operation of Semi Dry Reactor(SDR) (SDR 반응의 운전 최적화를 위한 전산 해석)

  • Park, Ki-Woo;Jung, Yu-Jin;Jeong, Moon-Heon;Hong, Sung-Gil;Jung, Jong-Hyeon;Lim, Ki-Hyuk;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.426-430
    • /
    • 2012
  • 본 연구에서는 3차원 수치 해석 기법으로 SDR 반응기 내 유동 특성을 모사하여 유동 분포 및 체류 시간등을 확인하고 혼합 특성 개선을 위한 방법에 대해 연구하였다. 본 연구 대상 SDR 반응기는 입구 덕트와 반응기 본체의 접속 구간에 가이드 베인(Guide vane)이 설치되어 있고 그 바로 하부 지점에 흡수제를 분무하는 노즐이 설치되어 있다. 이는 처리가스가 반응기로 유입될 때 가이드 베인에 의해 선회류를 형성하여 분무된 흡수제와의 혼합을 촉진시키기 위한 목적으로 설치하였다. 시간당 1,971$m^3/min$ at $260^{\circ}C$의 처리가스가 반응기 상부로 유입되어 가이드 베인을 거쳐 선회류를 형성한 후흡수제와 혼합되어 하부로 배출되는 구조이다. 유동 특성을 분석한 결과, 처리가스가 반응기 중앙으로 강하게 편중되고 있었으며 반응기 양 측면으로 부상 기류가 형성되고 있음을 확인할 수 있다. 또한 강한 편류에 의해 체류시간도 매우 짧은 것으로 판단되는 바, 가이드 베인의 기류 안내 각도가 적합하지 못함을 확인할 수 있었다. 이는 곧 혼합 특성 저하에 따른 미반응 액적의 다량 발생과 함께 고착에 의한 스케일 형성 가능성이 매우 클 것으로 예상되므로 혼합 특성을 개선할 수 있는 설계 변경이 필요할 것으로 판단되었다. 따라서 편류를 해소하고 노즐 근처에서의 체공시간을 확보할 수 있도록 가이드 베인의 안내 각도를 더 크게 변경한 결과, 기존 설계상에서 본체 중앙에 형성되는 편류가 해소되고 선회류의 전개 각도가 커지면서 체류시간 역시 약 5초 이상으로 유지되고 있음을 확인할 수 있었다. 따라서 가이드 베인의 각도만 변경하더라도 본체 형상의 추가적인 변경없이 유동의 혼합 특성을 개선시킬 수 있을 것으로 판단되었다.

  • PDF

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.