• Title/Summary/Keyword: Semi-active Control Algorithm

Search Result 147, Processing Time 0.028 seconds

Shaking table testing of a steel frame structure equipped with semi-active MR dampers: comparison of control algorithms

  • Caterino, N.;Spizzuoco, M.;Occhiuzzi, A.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.963-995
    • /
    • 2015
  • The effectiveness of the various control algorithms for semi-active structural control systems proposed in the literature is highly questionable when dealing with earthquake actions, which never reach a steady state. From this perspective, the paper summarizes the results of an experimental activity aimed to compare the effectiveness of four different semi-active control algorithms on a structural mock up representative of a class of structural systems particularly prone to seismic actions. The controlled structure is a near full scale 2-story steel frame, equipped with two semi-active bracing systems including two magnetorheological dampers designed and manufactured in Europe. A set of earthquake records has been applied at the base of the structure, by utilizing a shaking table facility. Experimental results are compared in terms of displacements, absolute accelerations and energy dissipation capability. A further analysis on the percentage incidence of undesired and/or unpredictable operations corresponding to each algorithm gives an insight on some factors affecting the reliability and, in turn, the real effectiveness of semi-active structural control systems.

Fuzzy control designed GA of a electro-rheology fluid damper (전기유변유체댐퍼의 유전자알고리즘에 의해 설계된 퍼지 제어)

  • 배종인;박명관;주동우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.438-441
    • /
    • 1997
  • This paper studies a semi-active suspension with ER damper controlled Fuzzy Net Controller designed GA(Genetic Algorithm). Apparent viscosity of ERF(Electro-Rheological Fluid) can be changed rapidly by applying electric field. Semi-active suspension for ground vehicles are expected to improve ride quality with less vibration. This paper deals with a two-degree -of-freedom suspension using the ER damper for a quarter vehicle system. In this paper, the GA is applied for generating Fuzzy Net Controllers. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers (다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.

Effective vibration control of multimodal structures with low power requirement

  • Loukil, Thamina;Ichchou, Mohamed;Bareille, Olivier;Haddar, Mohamed
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.435-451
    • /
    • 2014
  • In this paper, we investigate the vibration control of multimodal structures and present an efficient control law that requires less energy supply than active strategies. This strategy is called modal global semi-active control and is designed to work as effectively as the active control and consume less power which represents its major limitation. The proposed law is based on an energetic management of the optimal law such that the controller follows this latter only if there is sufficient energy which will be extracted directly from the system vibrations itself. The control algorithm is presented and validated for a cantilever beam structure subjected to external perturbations. Comparisons between the proposed law performances and those obtained by independent modal space control (IMSC) and semi-active control schemes are offered.

A Study on Performance Characteristics of Semi-Active Suspension System of Tracked Vehicle (궤도차량용 반능동 현수장치 성능특성에 관한 연구)

  • 김병운;이윤복;강이석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • In this study, the performance of a semi-active suspension system for heavy duty tracked vehicles has been investigated. To this end, continuous and on-off Sky-Hook control law have been evaluated for a 1/4 car model. Simulation results show that the semi-active suspension system has potential to improve ride quality of the vehicle. And we proposed a method for improving of variable damper performance.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System (반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발)

  • 손영일;이종호;송병석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Semi-active control of ship mast vibrations using magneto-rheological dampers

  • Cheng, Y.S.;Au, F.T.K.;Zhong, J.P.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.679-698
    • /
    • 2008
  • On marine vessels, delicate instruments such as navigation radars are normally mounted on ship masts. However the vibrations at the top of mast where the radar is mounted often cause serious deterioration in radar-tracking resolution. The most serious problem is caused by the rotational vibrations at the top of mast that may be due to wind loading, inertial loading from ship rolling and base excitations induced by the running propeller. This paper presents a method of semi-active vibration control using magneto-rheological (MR) dampers to reduce the rotational vibration of the mast. In the study, the classical optimal control algorithm, the independent modal space control algorithm and the double input - single output fuzzy control algorithm are employed for the vibration control. As the phenomenological model of an MR damper is highly nonlinear, which is difficult to analyse, a back- propagation neural network is trained to emulate the inverse dynamic characteristics of the MR damper in the analysis. The trained neural network gives the required voltage for each MR damper based on the displacement, velocity and control force of the MR damper quickly. Numerical simulations show that the proposed control methods can effectively suppress the rotational vibrations at the top of mast.