• Title/Summary/Keyword: Semantic maps

Search Result 80, Processing Time 0.029 seconds

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Semantic Topic Selection Method of Document for Classification (문서분류를 위한 의미적 주제선정방법)

  • Ko, kwang-Sup;Kim, Pan-Koo;Lee, Chang-Hoon;Hwang, Myung-Gwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.163-172
    • /
    • 2007
  • The web as global network includes text document, video, sound, etc and connects each distributed information using link Through development of web, it accumulates abundant information and the main is text based documents. Most of user use the web to retrieve information what they want. So, numerous researches have progressed to retrieve the text documents using the many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both the subject and the semantics of documents. As a result user have to find by their hand again. Especially, it is more hard to find the korean document because the researches of korean document classification is insufficient. So, to overcome the previous problems, we propose the korean document classification method for semantic retrieval. This method firstly, extracts TF value and RV value of concepts that is included in document, and maps into U-WIN that is korean vocabulary dictionary to select the topic of document. This method is possible to classify the document semantically and showed the efficiency through experiment.

A Caching Mechanism for Knowledge Maps (지식 맵을 위한 캐슁 기법)

  • 정준원;민경섭;김형주
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.282-291
    • /
    • 2004
  • There has been many researches in TopicMap and RDF which are approach to handle data efficiently with metadata. However, No researches has been performed to service and implement except for presentation and description. In this paper, We suggest the caching mechanism to support an efficient access of knowledgemap and practical knowledgemap service with implementation of TopicMap system. First, We propose a method to navigate Knowledgemap efficiently that includes advantage of former methods. Then, To transmit TopicMap efficiently, We suggest caching mechanism for knowledgemap. This method is that user will be able to navigate knowledgemap efficiently in the viewpoint of human, not application. Therefor the mechanism doesn't cash topics by logical or physical locality but clustering by information and characteristic value of TopicMap. Lastly, we suggest replace mechanism by using graph structure of TopicMap for efficiency of transmission.

Automatic Response and Conceptual Browsing of Internet FAQs Using Self-Organizing Maps (자기구성 지도를 이용한 인터넷 FAQ의 자동응답 및 개념적 브라우징)

  • Ahn, Joon-Hyun;Ryu, Jung-Won;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.432-441
    • /
    • 2002
  • Though many services offer useful information on internet, computer users are not so familiar with such services that they need an assistant system to use the services easily In the case of web sites, for example, the operators answer the users e-mail questions, but the increasing number of users makes it hard to answer the questions efficiently. In this paper, we propose an assistant system which responds to the users questions automatically and helps them browse the Hanmail Net FAQ (Frequently Asked Question) conceptually. This system uses two-level self-organizing map (SOM): the keyword clustering SOM and document classification SOM. The keyword clustering SOM reduces a variable length question to a normalized vector and the document classification SOM classifies the question into an answer class. Experiments on the 2,206 e-mail question data collected for a month from the Hanmail net show that this system is able to find the correct answers with the recognition rate of 95% and also the browsing based on the map is conceptual and efficient.

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Small Sample Face Recognition Algorithm Based on Novel Siamese Network

  • Zhang, Jianming;Jin, Xiaokang;Liu, Yukai;Sangaiah, Arun Kumar;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1464-1479
    • /
    • 2018
  • In face recognition, sometimes the number of available training samples for single category is insufficient. Therefore, the performances of models trained by convolutional neural network are not ideal. The small sample face recognition algorithm based on novel Siamese network is proposed in this paper, which doesn't need rich samples for training. The algorithm designs and realizes a new Siamese network model, SiameseFacel, which uses pairs of face images as inputs and maps them to target space so that the $L_2$ norm distance in target space can represent the semantic distance in input space. The mapping is represented by the neural network in supervised learning. Moreover, a more lightweight Siamese network model, SiameseFace2, is designed to reduce the network parameters without losing accuracy. We also present a new method to generate training data and expand the number of training samples for single category in AR and labeled faces in the wild (LFW) datasets, which improves the recognition accuracy of the models. Four loss functions are adopted to carry out experiments on AR and LFW datasets. The results show that the contrastive loss function combined with new Siamese network model in this paper can effectively improve the accuracy of face recognition.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

A new Mada-CenterNet based on Dual Block to improve accuracy of pest counting (해충 카운팅의 정확성 향상을 위한 Dual Block 기반의 새로운 Mada-CenterNet)

  • Hee-Jin Gwak;Cheol-Hee Lee;Chang-Hwan Son
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.342-351
    • /
    • 2024
  • Effective pest control in the agricultural field is essential for improving crop productivity. To do so, information on the type and timing of pests, as well as the amount of pests generated, is required. Mada-CenterNet, a prior study on pest counting, which is a method of identifying the amount of pest occurrence, has improved the accuracy of pest counting by utilizing transformable convolution and multiscale attention fusion and is reported to be the best in the field. In this study, a new transformer structure with a dual block was applied instead of multiscale attention, which is the transformer structure of Mada-CenterNet. More sophisticated feature maps were extracted through cross-attention of pixel path and semantic path. As a result of the experiment, the proposed model has improved the accuracy of pest counting. It is better than the existing Mada-CenterNet and effectively alleviates obstruction problems, damage to pests' bodies, and detection difficulties caused by various appearances. Unlike conventional pest counting methods, it can secure the advantage of reducing manpower and time costs, and it is expected that it can be used in other agricultural fields that require counting of objects.

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.

Communal Ontology of Landmarks for Urban Regional Navigation (도시 지역 이동을 위한 랜드마크의 공유 온톨로지 연구)

  • Hong, Il-Young
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.582-599
    • /
    • 2006
  • Due to the growing popularity of mobile information technology, more people, especially in the general public, have access to computerized geospatial information systems for wayfinding tasks or urban navigation. One of the problems with the current services is that, whether the users are exploring or navigating, whether they are travelers who are totally new to a region or long-term residents who have a fair amount of regional knowledge, the same method is applied and the direction are given in the same way. However, spatial knowledge for a given urban region expands in proportion to residency. Urban navigation is highly dependent on cognitive mental images, which is developed through spatial experience and social communication. Thus, the wayfinding service for a regional community can be highly supported, using well-known regional places. This research is to develop the framework for urban navigation within a regional community. The concept of communal ontology is proposed to aid in urban regional navigation. The experimental work was implemented with case study to collect regional landmarks, develop the ontological model and represent it with formal structure. The final product of this study will provide the geographical information of a region to the other agent and be the fundamental information structure for cognitive urban regional navigation.