The Journal of Korean Association of Computer Education
/
v.6
no.4
/
pp.31-36
/
2003
In the past few years, enormous improvements have been obtained in the field of content-based image retrieval (CBIR). This paper presents a comprehensive survey on the current CBIR systems and some of their challenging technical aspects, which stand as an obstacle on its way to become successful. Furthermore, we have focused on the current state of semantic image retrieval and also we have suggested future promising directions for further research.
Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.
Nowadays, many investigators are studying various methodologies concerning event expression for semantic retrieval of video data. However, most of the parts are still using annotation based retrieval that is defined into annotation of each data and content based retrieval using low-level features. So, we propose a method of creation of the motion unit and extracting event through the unit for the more semantic retrieval than existing methods. First, we classify motions by event unit. Second, we define semantic unit about classified motion of object. For using these to event extraction, we create rules that are able to match the low-level features, from which we are able to retrieve semantic event as a unit of video shot. For the evaluation of availability, we execute an experiment of extraction of semantic event in video image and get approximately 80% precision rate.
The explosive growth of the Internet leads to various on-line shopping malls and active E-Commerce. however, as the internet has experienced continuous growth, users have to face a variety and a huge amount of items, and often waste a lot of time on purchasing items that are relevant to their interests. To overcome this problem the comparison shopping systems, which can help to compare items' information with those other shopping malls, have been issued as a solution. However, when users do not have much knowledge what they want to find, a keyword-based searching in the existing comparison shopping systems lead users to waste time for searching information. Thereby, the performance is fell down. To solve this problem in this research, we suggest the Comparison Shopping System using Image Retrieval based on Semantic Web. The proposed system can assist users who don't know items' information that they want to find and serve users for quickly comparing information among the items. In the proposed system we use semantic web technology. We insert the Semantic Annotation based on Ontology into items' image of each shopping mall. Consequently, we employ those images for searching the items instead of using a complex keyword. In order to evaluate performance of the proposed system we compare our experimental results with those of Keyword-based Comparison Shopping System and simple Semantic Web-based Comparison Shopping System. Our result shows that the proposed system has improved performance in comparison with the other systems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.5
/
pp.1252-1271
/
2013
Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.
In order to retrieve images with different emotions in regions of the images, this paper proposes the image retrieval system using emotion sketch. The proposed retrieval system divides an image into $17{\times}17$ sub-regions and extracts emotion features in each sub-region. In order to extract the emotion features, this paper uses emotion colors on 160 emotion words from H. Nagumo's color scheme imaging chart. We calculate a histogram of each sub-region and consider one emotion word having the maximal value as a representative emotion word of the sub-region. The system demonstrates the effectiveness of the proposed emotion sketch and our experimental results show that the system successfully retrieves on the Corel image database.
Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
Journal of KIISE:Databases
/
v.36
no.6
/
pp.434-445
/
2009
Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.6
/
pp.2527-2545
/
2016
Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.
The Journal of the Korea institute of electronic communication sciences
/
v.11
no.7
/
pp.677-684
/
2016
With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.
Journal of the Korean Society for information Management
/
v.24
no.3
/
pp.119-147
/
2007
Actually a diffusion of a semantic web application and utilization are situations insufficient extremely. Technology most important in semantic web application is construction of the ontology which contents itself with characteristics of semantic web. Proposed a suitable a method of building web ontology for characteristics or semantic web and web ontology as we compared the existing ontology construction ana ontology construction techniques proposed for web ontology construction, and we analyzed. And modeling old ontology to bases to description logic and the any axiom rule that used an expression way of SWRL, and established inference-based web ontology according to proposed ways. Verified performance of ontology established through ontology inference experiment. Also established an web ontology-based intelligence image retrieval system, to experiment systems for performance evaluation of established web ontology, and present an example of implementation of a semantic web application and utilization. Demonstrated excellence of a semantic web application to be based on ontology through inference experiment of an experiment system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.