• Title/Summary/Keyword: Semantic image retrieval

Search Result 74, Processing Time 0.025 seconds

Anatomy of Current Issues on Content-Based Image Retrieval (내용기반 영상검색 시스템의 분석 및 발전 방안)

  • Singh, Kulwinder;Ma, Ming;Park, DongWon;An, Syungog
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 2003
  • In the past few years, enormous improvements have been obtained in the field of content-based image retrieval (CBIR). This paper presents a comprehensive survey on the current CBIR systems and some of their challenging technical aspects, which stand as an obstacle on its way to become successful. Furthermore, we have focused on the current state of semantic image retrieval and also we have suggested future promising directions for further research.

  • PDF

A Comparative Study of Local Features in Face-based Video Retrieval

  • Zhou, Juan;Huang, Lan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2017
  • Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.

Video Event Detection according to Generating of Semantic Unit based on Moving Object (객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출)

  • Shin, Ju-Hyun;Baek, Sun-Kyoung;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • Nowadays, many investigators are studying various methodologies concerning event expression for semantic retrieval of video data. However, most of the parts are still using annotation based retrieval that is defined into annotation of each data and content based retrieval using low-level features. So, we propose a method of creation of the motion unit and extracting event through the unit for the more semantic retrieval than existing methods. First, we classify motions by event unit. Second, we define semantic unit about classified motion of object. For using these to event extraction, we create rules that are able to match the low-level features, from which we are able to retrieve semantic event as a unit of video shot. For the evaluation of availability, we execute an experiment of extraction of semantic event in video image and get approximately 80% precision rate.

  • PDF

Comparison Shopping Systems using Image Retrieval based on Semantic Web (시맨틱 웹 기반의 이미지 정색을 이용한 비교 쇼핑 시스템)

  • Lee, Kee-Sung;Yu, Young-Hoon;Jo, Gun-Sik;Kim, Heung-Nam
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.1-15
    • /
    • 2005
  • The explosive growth of the Internet leads to various on-line shopping malls and active E-Commerce. however, as the internet has experienced continuous growth, users have to face a variety and a huge amount of items, and often waste a lot of time on purchasing items that are relevant to their interests. To overcome this problem the comparison shopping systems, which can help to compare items' information with those other shopping malls, have been issued as a solution. However, when users do not have much knowledge what they want to find, a keyword-based searching in the existing comparison shopping systems lead users to waste time for searching information. Thereby, the performance is fell down. To solve this problem in this research, we suggest the Comparison Shopping System using Image Retrieval based on Semantic Web. The proposed system can assist users who don't know items' information that they want to find and serve users for quickly comparing information among the items. In the proposed system we use semantic web technology. We insert the Semantic Annotation based on Ontology into items' image of each shopping mall. Consequently, we employ those images for searching the items instead of using a complex keyword. In order to evaluate performance of the proposed system we compare our experimental results with those of Keyword-based Comparison Shopping System and simple Semantic Web-based Comparison Shopping System. Our result shows that the proposed system has improved performance in comparison with the other systems.

  • PDF

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

Query-by-emotion sketch for local emotion-based image retrieval (지역 감성기반 영상 검색을 위한 감성 스케치 질의)

  • Lee, Kyoung-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.113-121
    • /
    • 2009
  • In order to retrieve images with different emotions in regions of the images, this paper proposes the image retrieval system using emotion sketch. The proposed retrieval system divides an image into $17{\times}17$ sub-regions and extracts emotion features in each sub-region. In order to extract the emotion features, this paper uses emotion colors on 160 emotion words from H. Nagumo's color scheme imaging chart. We calculate a histogram of each sub-region and consider one emotion word having the maximal value as a representative emotion word of the sub-region. The system demonstrates the effectiveness of the proposed emotion sketch and our experimental results show that the system successfully retrieves on the Corel image database.

  • PDF

Relevance Feedback using Region-of-interest in Retrieval of Satellite Images (위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백)

  • Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.434-445
    • /
    • 2009
  • Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.

Learning Probabilistic Kernel from Latent Dirichlet Allocation

  • Lv, Qi;Pang, Lin;Li, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2527-2545
    • /
    • 2016
  • Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.

Image Retrieval System of semantic Inference using Objects in Images (이미지의 객체에 대한 의미 추론 이미지 검색 시스템)

  • Kim, Ji-Won;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.677-684
    • /
    • 2016
  • With the increase of multimedia information such as image, researches on extracting high-level semantic information from low-level visual information has been realized, and in order to automatically generate this kind of information. Various technologies have been developed. Generally, image retrieval is widely preceded by comparing colors and shapes among images. In some cases, images with similar color, shape and even meaning are hard to retrieve. In this article, in order to retrieve the object in an image, technical value of middle level is converted into meaning value of middle level. Furthermore, to enhance accuracy of segmentation, K-means algorithm is engaged to compute k values for various images. Thus, object retrieval can be achieved by segmented low-level feature and relationship of meaning is derived from ontology. The method mentioned in this paper is supposed to be an effective approach to retrieve images as required by users.

An Implementation of Inference-Based Web Ontology for Intelligent Image Retrieval System (지능형 이미지 검색 시스템을 위한 추론 기반의 웹 온톨로지 구축)

  • Kim, Su-Kyoung;Ahn, Kee-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.119-147
    • /
    • 2007
  • Actually a diffusion of a semantic web application and utilization are situations insufficient extremely. Technology most important in semantic web application is construction of the ontology which contents itself with characteristics of semantic web. Proposed a suitable a method of building web ontology for characteristics or semantic web and web ontology as we compared the existing ontology construction ana ontology construction techniques proposed for web ontology construction, and we analyzed. And modeling old ontology to bases to description logic and the any axiom rule that used an expression way of SWRL, and established inference-based web ontology according to proposed ways. Verified performance of ontology established through ontology inference experiment. Also established an web ontology-based intelligence image retrieval system, to experiment systems for performance evaluation of established web ontology, and present an example of implementation of a semantic web application and utilization. Demonstrated excellence of a semantic web application to be based on ontology through inference experiment of an experiment system.