• Title/Summary/Keyword: Semantic image retrieval

Search Result 74, Processing Time 0.025 seconds

Design and Implementation of Domain Ontology to Overcome Conceptual Heterogeneity in Annotation-based Image Retrieval (주석기반 이미지 검색에서 개념적 이질성 극복을 위한 도메인 온톨로지 설계 및 구현)

  • Kim Won-Pil;Kim Pan-Koo
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • As the multimedia information retrieval system is advanced, the study of multimedia information retrieval is changing the method of low-level content based image retrieval to the semantical concept based retrieval. in this paper, we apply the theory of ontology to overcome the conceptual heterogeneity in the annotation based image retrieval. And we solve the some problems that happen when the ontology apply. As a result of our study, we try to apply the domain ontology to settle the conceptual heterogenity. In the experimental result, we knew that the semantic distance among the words is pretty dose when we apply the domain ontology than the wordnet. And in this paper, we show the possibility of the semantic image retrieval as we apply the domain ontology in the annotation based image retrieval.

  • PDF

Developing an Education Image Retrieval System based on MPEG-7 using KEM 2.0 (KEM 2.0을 이용한 MPEG-7 기반의 교육용 영상정보 검색시스템 개발)

  • Kwak, Kil-Sin;Joo, Kyung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.155-164
    • /
    • 2005
  • WThe education information have been increased. Accordingly, the necessary of developing on education information metadata standards has been increased. By the reason, the Korea Education & Research Information Service developed KEM(Korea Educational Metadata) 2.0. And MPEG-7 was developed to describe metadata of multimedia data. In this paper, we developed a education information image retrieval system. This system used XML schema to accept education information image metadata. We integrated contents-based retrieval and a semantic-based retrieval to overcome there problems that content-based retrieval system can not support semantic-based retrieval and a semantic-based retrieval can not support content-based retrieval. As a results, we expect to handle metadata more efficiently.

  • PDF

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

Learning Similarity with Probabilistic Latent Semantic Analysis for Image Retrieval

  • Li, Xiong;Lv, Qi;Huang, Wenting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1424-1440
    • /
    • 2015
  • It is a challenging problem to search the intended images from a large number of candidates. Content based image retrieval (CBIR) is the most promising way to tackle this problem, where the most important topic is to measure the similarity of images so as to cover the variance of shape, color, pose, illumination etc. While previous works made significant progresses, their adaption ability to dataset is not fully explored. In this paper, we propose a similarity learning method on the basis of probabilistic generative model, i.e., probabilistic latent semantic analysis (PLSA). It first derives Fisher kernel, a function over the parameters and variables, based on PLSA. Then, the parameters are determined through simultaneously maximizing the log likelihood function of PLSA and the retrieval performance over the training dataset. The main advantages of this work are twofold: (1) deriving similarity measure based on PLSA which fully exploits the data distribution and Bayes inference; (2) learning model parameters by maximizing the fitting of model to data and the retrieval performance simultaneously. The proposed method (PLSA-FK) is empirically evaluated over three datasets, and the results exhibit promising performance.

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Recent Development in Text-based Medical Image Retrieval (텍스트 기반 의료영상 검색의 최근 발전)

  • Hwang, Kyung Hoon;Lee, Haejun;Koh, Geon;Kim, Seog Gyun;Sun, Yong Han;Choi, Duckjoo
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.55-60
    • /
    • 2015
  • An effective image retrieval system is required as the amount of medical imaging data is increasing recently. Authors reviewed the recent development of text-based medical image retrieval including the use of controlled vocabularies - RadLex (Radiology Lexicon), FMA (Foundational Model of Anatomy), etc - natural language processing, semantic ontology, and image annotation and markup.

A Retrieval System of Environment Education Contents using Method of Automatic Annotation and Histogram (자동 주석 및 히스토그램 기법을 이용한 환경 교육 컨텐츠 검색 시스템)

  • Lee, Keun-Wang;Kim, Jin-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.114-121
    • /
    • 2008
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. In this paper, we propose semantic-based video retrieval system for Environment Education Contents which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted form query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

Deep Image Retrieval using Attention and Semantic Segmentation Map (관심 영역 추출과 영상 분할 지도를 이용한 딥러닝 기반의 이미지 검색 기술)

  • Minjung Yoo;Eunhye Jo;Byoungjun Kim;Sunok Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Self-driving is a key technology of the fourth industry and can be applied to various places such as cars, drones, cars, and robots. Among them, localiztion is one of the key technologies for implementing autonomous driving as a technology that identifies the location of objects or users using GPS, sensors, and maps. Locilization can be made using GPS or LIDAR, but it is very expensive and heavy equipment must be mounted, and precise location estimation is difficult for places with radio interference such as underground or tunnels. In this paper, to compensate for this, we proposes an image retrieval using attention module and image segmentation maps using color images acquired with low-cost vision cameras as an input.

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.