In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.
Kim Sam-Keun;Lee Jong-Hee;Yoon Sun-Hee;Lee Keun-Soo;Seo Jeong-Min
Journal of Korea Multimedia Society
/
v.9
no.1
/
pp.127-137
/
2006
In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the automatic indexing agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantic-based retrieval.
According to the rapid increase of multimedia data quantity recently, various means of video data search has been desired. In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.
Now a days, to make good use of tags is a general tendency when users need to upload or search some multimedia data such as images and videos on the Web. In this paper, we introduce an approach to calculate semantic importance of tags and to make re-ranking with them on tagged Web image retrieval. Generally, most photo images stored on the Web have lots of tags added with user's subjective judgements not by the importance of them. So they become the cause of precision rate decrease with simple matching of tags to a given query. Therefore, if we can select semantically important tags and employ them on the image search, the retrieval result would be enhanced. In this paper, we propose a method to make image retrieval re-ranking with the key tags which share more semantic information with a query or other tags based on Wikipedia-based semantic relatedness. With the semantic relatedness calculated by using huge on-line encyclopedia, Wikipedia, we found the superiority of our method in precision and recall rate as experimental results.
As the modern techniques have improved, people intend to store and manage the information on the web. Especially, it is the image data that is given a great deal of weight of the information because of the development of the scan and popularization of the digital camera and the cell-phone's camera. However, most image retrieval systems are still based on the text annotations while many images are creating everyday on the web. In this paper, we suggest the new approach for the semantic image retrieval using the RDF metadata based on the representation of the spatial relationships. For the semantic image retrieval, firstly we define the new vocabularies to represent the spatial relationships between the objects in the image. Secondly, we write the metadata about the image using RDF and new vocabularies. Finally. we could expect more correct result in our image retrieval system.
This research is for early extraction and utilization of semantic information from the tags in tagged Web image retrieval. Generally, users attach a tag to a Web image with little thought of the order, up to over 100 ones. In this paper, we suggest a method of selecting prior tags based on their importance when tagged images are uploaded, and using them in image retrieval. Ideas came from the recognition of the important tags which give a better description of the image as the tags sharing more semantic information with other tags of the same image. This method includes calculation of relation scores between tags based on WordNet and multilevel search of tagged images with the scores. For evaluation, we compared the suggested method and other retrieval methods searching images with simple matching of tags to a given keyword. As the results, we found the superiority of our method in precision and recall rate.
International Journal of Computer Science & Network Security
/
v.24
no.10
/
pp.197-205
/
2024
This paper introduces a new approach to semantic image retrieval using shape descriptors as dispersion and moment in conjunction with discriminative model of Latent-dynamic Conditional Random Fields (LDCRFs). The target region is firstly localized via the background subtraction model. Then the features of dispersion and moments are employed to k-mean procedure to extract object's feature as second stage. After that, the learning process is carried out by LDCRFs. Finally, SPARQL language on input text or image query is to retrieve semantic image based on sequential processes of Query Engine, Matching Module and Ontology Manger. Experimental findings show that our approach can be successful retrieve images against the mammals Benchmark with rate 98.11. Such outcomes are likely to compare very positively with those accessible in the literature from other researchers.
Semantic interpretation of image is incomplete without some mechanism for understanding semantic content that is not directly visible. For this reason, human assisted content-annotation through natural language is an attachment of textual description to image. However, keyword-based retrieval is in the level of syntactic pattern matching. In other words, dissimilarity computation among terms is usually done by using string matching not concept matching. In this paper, we propose a method for computerized semantic similarity calculation In WordNet space. We consider the edge, depth, link type and density as well as existence of common ancestors. Also, we have introduced method that applied similarity measurement on semantic image retrieval. To combine wi#h the low level features, we use the spatial color distribution model. When tested on a image set of Microsoft's 'Design Gallery Line', proposed method outperforms other approach.
Journal of information and communication convergence engineering
/
v.19
no.1
/
pp.36-41
/
2021
Text-based image retrieval is not only cumbersome as it requires the manual input of keywords by the user, but is also limited in the semantic approach of keywords. However, content-based image retrieval enables visual processing by a computer to solve the problems of text retrieval more fundamentally. Vision applications such as extraction and mapping of image characteristics, require the processing of a large amount of data in a mobile environment, rendering efficient power consumption difficult. Hence, an effective image retrieval method on mobile platforms is proposed herein. To provide the visual meaning of keywords to be inserted into images, the efficiency of image retrieval is improved by extracting keywords of exchangeable image file format metadata from images retrieved through a content-based similar image retrieval method and then adding automatic keywords to images captured on mobile devices. Additionally, users can manually add or modify keywords to the image metadata.
Kim, Deok-Hwan;Song, Jae-Won;Lee, Ju-Hong;Choi, Bum-Ghi
ETRI Journal
/
v.29
no.5
/
pp.700-702
/
2007
We present a relevance feedback approach based on multi-class support vector machine (SVM) learning and cluster-merging which can significantly improve the retrieval performance in region-based image retrieval. Semantically relevant images may exhibit various visual characteristics and may be scattered in several classes in the feature space due to the semantic gap between low-level features and high-level semantics in the user's mind. To find the semantic classes through relevance feedback, the proposed method reduces the burden of completely re-clustering the classes at iterations and classifies multiple classes. Experimental results show that the proposed method is more effective and efficient than the two-class SVM and multi-class relevance feedback methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.