• Title/Summary/Keyword: Semantic Technology

Search Result 950, Processing Time 0.031 seconds

Using Syntax and Shallow Semantic Analysis for Vietnamese Question Generation

  • Phuoc Tran;Duy Khanh Nguyen;Tram Tran;Bay Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2718-2731
    • /
    • 2023
  • This paper presents a method of using syntax and shallow semantic analysis for Vietnamese question generation (QG). Specifically, our proposed technique concentrates on investigating both the syntactic and shallow semantic structure of each sentence. The main goal of our method is to generate questions from a single sentence. These generated questions are known as factoid questions which require short, fact-based answers. In general, syntax-based analysis is one of the most popular approaches within the QG field, but it requires linguistic expert knowledge as well as a deep understanding of syntax rules in the Vietnamese language. It is thus considered a high-cost and inefficient solution due to the requirement of significant human effort to achieve qualified syntax rules. To deal with this problem, we collected the syntax rules in Vietnamese from a Vietnamese language textbook. Moreover, we also used different natural language processing (NLP) techniques to analyze Vietnamese shallow syntax and semantics for the QG task. These techniques include: sentence segmentation, word segmentation, part of speech, chunking, dependency parsing, and named entity recognition. We used human evaluation to assess the credibility of our model, which means we manually generated questions from the corpus, and then compared them with the generated questions. The empirical evidence demonstrates that our proposed technique has significant performance, in which the generated questions are very similar to those which are created by humans.

Literature Review of Extended Reality Research in Consumer Experience: Insight From Semantic Network Analysis and Topic Modeling

  • Hansol Choi;Hyemi Lee
    • Asia Marketing Journal
    • /
    • v.26 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • Extended Reality (XR) technology, the umbrella term covering hyper-realistic technologies, is known to enhance consumer experience and is therefore developing rapidly and being utilized across various industries. Growing studies have examined XR technology and consumer experience; however, the literature has failed to fully explore hyper-realistic technology through a holistic perspective. To fill this gap, we analyzed 720 Korean and international articles through semantic network analysis and topic modeling and identified the literature on XR research in consumer experience. As a result, we extracted six main topics: "Tourism," "Buying Behavior," "XR Technology Acceptance," "Virtual Space," "Game," and "XR Environment." The results provide comprehensive insight on XR technology in consumer experience, whereas the literature is bounded on the production side as revealing a lack of academic discourse on consumer rights and responsibilities. Research reflecting the consumer welfare perspective is, therefore, recommended for future studies.

A Suggestion of Interface for Ontology-Based Record Retrieval System (온톨로지 기반의 기록물 검색 시스템을 위한 인터페이스 제안)

  • Lee, Yu-Been;Rieh, Hae-Young
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.17 no.1
    • /
    • pp.217-244
    • /
    • 2017
  • With the development of information technology, users can freely search records and archives without the involvement of archivists. However, existing records retrieval systems show only partial search results, which do not consider the users' intention. To overcome this problem, semantic web technology is being developed, and the International Council on Archives (ICA) is working to develop RIC (Records In Context), a new archival description standard, which reflects the trend. The conceptual model for archival description and its ontology of RIC are the basis for implementing semantic-based retrieval. In other words, it is necessary to consider the viewpoint of the users on how the records retrieval based on meaning should be designed and provided. Therefore, this study selected three cases of systems, which are built as semantic web technology, and conducted interviews of the users for the evaluation of the systems based on user experience. This study proposes the kind of interface that can be implemented for the ontology-based record retrieval system.

Implementation and Design of College Information Retrieval System Based On Ontology (온톨로지 기반 대학정보 검색 시스템의 설계 및 구현)

  • Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.296-301
    • /
    • 2012
  • Currently, in order to develop an intelligent search engine to help users retrieve information effectively, many metodes have been used. The effective retrieval methods of these methods use ontology technology. Ontology technology is the core of the Semantic Web. In the Semantic Web, ontology technology can be used to retrieve related information through the inference engine more accurately and simply on the Semantic Web. In this paper, we implement and design college information retrieval based on ontology to retrieve college class, graduate school class and person class. We have collected the hierarchy structure about the College, graduate school and person informations, and we have used protege editor of the ontology developing tool to design some ontologies with the College informations collected. We also tested the designed ontology with the Inference Engine(Pellet) of protege editor, and implemented college information retrieval system using Inference Engine(Jena) for web services.

Smart Browser based on Semantic Web using RFID Technology (RFID 기술을 이용한 시맨틱 웹 기반 스마트 브라우저)

  • Song, Chang-Woo;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.37-44
    • /
    • 2008
  • Data entered into RFID tags are used for saving costs and enhancing competitiveness in the development of applications in various industrial areas. RFID readers perform the identification and search of hundreds of objects, which are tags. RFID technology that identifies objects on request of dynamic linking and tracking is composed of application components supporting information infrastructure. Despite their many advantages, existing applications, which do not consider elements related to real.time data communication among remote RFID devices, cannot support connections among heterogeneous devices effectively. As different network devices are installed in applications separately and go through different query analysis processes, there happen the delays of monitoring or errors in data conversion. The present study implements a RFID database handling system in semantic Web environment for integrated management of information extracted from RFID tags regardless of application. Users’ RFID tags are identified by a RFID reader mounted on an application, and the data are sent to the RFID database processing system, and then the process converts the information into a semantic Web language. Data transmitted on the standardized semantic Web base are translated by a smart browser and displayed on the screen. The use of a semantic Web language enables reasoning on meaningful relations and this, in turn, makes it easy to expand the functions by adding modules.

Ontology-based IoT Context Information Modeling and Semantic-based IoT Mashup Services Implementation (온톨로지 기반의 IoT 상황 정보 모델링 및 시맨틱 기반 IoT 매쉬업 서비스 구현)

  • Seok, Hyun-Seung;Lee, Yong-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.671-678
    • /
    • 2019
  • The semantic information provided through the semantic-based IoT system will produce new high value-added products that are completely different from what we have known and experienced. From this point of view, the key issue of current IoT technology and applications is the development of an intelligent IoT platform architecture. The proposed system collects the IoT data of the sensors from the cloud computer, converts them into RDF, and annotates them with semantics. The converted semantic data is shared and utilized through the ontology repository. We use KT's IoTMakers as a cloud computing environment, and the ontology repository uses Jena's Fuseki server to express SPARQL query results on the web using Daum Map API and Highcharts API. This gives people the opportunity to access the semantic IoT mash-up service easily and has various application possibilities.

Geometric and Semantic Improvement for Unbiased Scene Graph Generation

  • Ruhui Zhang;Pengcheng Xu;Kang Kang;You Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2643-2657
    • /
    • 2023
  • Scene graphs are structured representations that can clearly convey objects and the relationships between them, but are often heavily biased due to the highly skewed, long-tailed relational labeling in the dataset. Indeed, the visual world itself and its descriptions are biased. Therefore, Unbiased Scene Graph Generation (USGG) prefers to train models to eliminate long-tail effects as much as possible, rather than altering the dataset directly. To this end, we propose Geometric and Semantic Improvement (GSI) for USGG to mitigate this issue. First, to fully exploit the feature information in the images, geometric dimension and semantic dimension enhancement modules are designed. The geometric module is designed from the perspective that the position information between neighboring object pairs will affect each other, which can improve the recall rate of the overall relationship in the dataset. The semantic module further processes the embedded word vector, which can enhance the acquisition of semantic information. Then, to improve the recall rate of the tail data, the Class Balanced Seesaw Loss (CBSLoss) is designed for the tail data. The recall rate of the prediction is improved by penalizing the body or tail relations that are judged incorrectly in the dataset. The experimental findings demonstrate that the GSI method performs better than mainstream models in terms of the mean Recall@K (mR@K) metric in three tasks. The long-tailed imbalance in the Visual Genome 150 (VG150) dataset is addressed better using the GSI method than by most of the existing methods.

Methodology for Deriving Technical Information Based on Stakeholder Requirements - Focused on 4th Industry Nanosensor Case (이해관계자 요구사항 기반 기술정보 도출 방법론 - 나노 센서 사례)

  • Gi, Wan Wook;Kim, Kwang Soo;Hong, Dae Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • For the purpose of technology planning and R&D strategy, this research developed a methodology for deriving technical information based on stakeholder requirements using natural language processing technology. The requirements are decomposed into semantic information based on grammar rules, and then the requirement information based technology information can be derived by linking with the three technical information extracted from the patent.

APPAREL PRODUCTS RETRIEVAL SYSTEM BASED ON PSYCOLOGICAL FEATURE SPACE

  • Ohtake, Atsushi;Takatera, Masayuki;Furukawa, Takao;Shimizu, Yoshio
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.240-243
    • /
    • 2000
  • An apparel products retrieval system was proposed in which users can refer to products using Kansei evaluation values. The system adopts relevance feedback using history of the retrieval to learn the tendency of user evaluation. The system is based on a vector space retrieval model using products images expression as semantic scales. The system makes a query from user inputting information and retrieves closest products from the database. Revising algorithms of the difference method. linear multiple regression performed to investigate the effectiveness and criteria of the search. As a result of evaluation of the accuracy, it was found that the linear multiple regression and the neural network models are effective for the retrieval considering the individual Kansei.

  • PDF

A Digital Image Watermarking Using Region Segmentation

  • Park, Min-Chul;Han, Suk-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1260-1263
    • /
    • 2002
  • This paper takes the region segmentation in image processing and the semantic importance in an image analysis into consideration for digital image watermarking. A semantic importance for an object region, which is segmented by specific features, is determined according to the contents of the region. In this paper, face images are the targets of watermarking for their increasing importance, the use of frequency and strong necessity of protection. A face region is detected and segmented as an object region and encoded watermark information is embedded into the region. Employing a masking and filtering method, experiments are carried out and the results show the usefulness of the proposed method even when there are high compression and a synthesis as a case of copyright infringement.

  • PDF