• 제목/요약/키워드: Semantic Tagging

검색결과 37건 처리시간 0.018초

U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템 (Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network)

  • 이용훈;옥철영;이응봉
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.63-76
    • /
    • 2012
  • 본 논문에서는 통계기반의 복합명사 분해 방법과 어휘의미망(U-WIN)과 사전 뜻풀이에서 추출한 의미관계 정보를 이용하는 한국어 복합명사 의미 태깅 시스템을 제안한다. 본 시스템은 크게 복합명사 분해, 의미제약, 그리고 의미 태깅의 세 가지 부분으로 이루어진다. 분해과정은 세종말뭉치에서 추출한 위치별명사 빈도를 사용하여 최적의 구성 명사 분해 후보를 선정하고 의미제약을 위한 구성 명사 재분해와 외래어 복원의 과정을 수행한다. 의미범위 제약과정은 유사도 비교의 계산량을 줄이고 정확도를 높이기 위해 원어 정보와 Naive Bayes Classifier를 이용해 가능한 경우 구성 명사의 의미를 선 제약한다. 의미 분석 및 태깅 과정에서는 bigram 구성 명사의 각 의미 유사도를 구하고 하나의 체인을 만들어가며 태깅을 수행한다. 본 시스템의 성능 평가를 위해 표준국어대사전에서 추출한 3음절 이상의 40,717개의 복합명사를 대상으로 의미 태깅된 테스트 셋을 구축하였다. 이를 이용한 실험에서 99.26%의 분해 정확도를 보였으며, 95.38%의 의미 분석 정확도를 보였다.

Improved Character-Based Neural Network for POS Tagging on Morphologically Rich Languages

  • Samat Ali;Alim Murat
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.355-369
    • /
    • 2023
  • Since the widespread adoption of deep-learning and related distributed representation, there have been substantial advancements in part-of-speech (POS) tagging for many languages. When training word representations, morphology and shape are typically ignored, as these representations rely primarily on collecting syntactic and semantic aspects of words. However, for tasks like POS tagging, notably in morphologically rich and resource-limited language environments, the intra-word information is essential. In this study, we introduce a deep neural network (DNN) for POS tagging that learns character-level word representations and combines them with general word representations. Using the proposed approach and omitting hand-crafted features, we achieve 90.47%, 80.16%, and 79.32% accuracy on our own dataset for three morphologically rich languages: Uyghur, Uzbek, and Kyrgyz. The experimental results reveal that the presented character-based strategy greatly improves POS tagging performance for several morphologically rich languages (MRL) where character information is significant. Furthermore, when compared to the previously reported state-of-the-art POS tagging results for Turkish on the METU Turkish Treebank dataset, the proposed approach improved on the prior work slightly. As a result, the experimental results indicate that character-based representations outperform word-level representations for MRL performance. Our technique is also robust towards the-out-of-vocabulary issues and performs better on manually edited text.

Automatic In-Text Keyword Tagging based on Information Retrieval

  • Kim, Jin-Suk;Jin, Du-Seok;Kim, Kwang-Young;Choe, Ho-Seop
    • Journal of Information Processing Systems
    • /
    • 제5권3호
    • /
    • pp.159-166
    • /
    • 2009
  • As shown in Wikipedia, tagging or cross-linking through major keywords in a document collection improves not only the readability of documents but also responsive and adaptive navigation among related documents. In recent years, the Semantic Web has increased the importance of social tagging as a key feature of the Web 2.0 and, as its crucial phenotype, Tag Cloud has emerged to the public. In this paper we provide an efficient method of automated in-text keyword tagging based on large-scale controlled term collection or keyword dictionary, where the computational complexity of O(mN) - if a pattern matching algorithm is used - can be reduced to O(mlogN) - if an Information Retrieval technique is adopted - while m is the length of target document and N is the total number of candidate terms to be tagged. The result shows that automatic in-text tagging with keywords filtered by Information Retrieval speeds up to about 6 $\sim$ 40 times compared with the fastest pattern matching algorithm.

요구사항 온톨로지 기반의 시맨틱 태깅을 활용한 산출물의 재사용성 지원을 위한 요구사항추적 방법 (A Method for Requirements Traceability for Reuse of Artifacts using Requirements-Ontology-based Semantic Tagging)

  • 이준기;조혜경;고인영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권6호
    • /
    • pp.357-365
    • /
    • 2008
  • 산출물들의 추적 관계 정의를 이용한 요구사항 추적을 통해, 기존의 컴포넌트 자체의 재사용뿐만 아니라 컴포넌트 개발과정에서 나오는 다양한 산출물들을 요구사항 기반으로 재사용할 수 있다. 이러한 재사용성 증가를 목적으로 하는 요구사항추적을 지원하기 위해서는 산출물들이 요구사항을 기반으로 표현될 수 있어야 하고, 표현된 요구사항을 기반으로 하여 추적관계를 추론하는 메커니즘이 제공되어야 한다. 이를 위해, 본 논문에서는 시맨틱스 기반의 요구사항추적을 지원하기 위해서 요구사항 온톨로지를 하여 기술한다. 그 다음에 산출물들이 요구사항 온톨로지를 통해서 시맨틱 태깅되는 기술을 기술한다. 본 논문은 이와 같이 요구사항 추적을 위한 메커니즘을 제안하고, 요구사항 온톨로지의 구조를 정의하며 프로토타입을 제시한다.

태그 온톨로지를 이용한 자동 태깅 및 태그 추천 기법 (Automatic Tagging and Tag Recommendation Techniques Using Tag Ontology)

  • 김재승;문현정;우용태
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.167-179
    • /
    • 2009
  • 본 논문에서는 태그 온톨로지를 이용하여 표준화된 태그를 추천할 수 있는 기법을 제안하였다. 태그 추천 기법은 기존에 생성된 대량의 문서 집합을 대상으로 자동 태깅하기 위한 기법(TWCIDF)과 신규 문서를 대상으로 태그를 추천하기 위한 기법(TWCITC)으로 구성된다. 태그집합은 전처리 과정, 태그 온톨로지를 이용한 표준화 작업, 자동 태깅 및 추천을 위한 랭킹 부여과정을 거쳐 구성된다. 전처리 과정에서는 의미있는 복합명사를 찾기 위한 용어결합과정을 사용하였고, 표준화 작업 과정에서는 용어의 오탈자 및 유사용어를 처리하였다. 본 논문에서 제안한 기법의 실험 결과, 추천 태그의 정확성을 유지하면서도 실시간으로 자동태깅 및 태그 추천이 가능함을 보여주었다.

  • PDF

GeoSemantic Web을 위한 공간정보태깅 및 검색 프레임워크의 설계 (Design of GeoSpatial Tagging and Retrieval Framework for GeoSemantic Web)

  • 하수욱;하태석;양평우;정용희;정해춘;남광우
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2010년도 추계학술대회
    • /
    • pp.340-343
    • /
    • 2010
  • 이 논문은 GeoSemantic Web을 위한 공간정보 태깅 및 검색 프레임워크를 제안한다. 웹상의 문서들은 다양한 공간정보를 포함하고 있으며, 이러한 텍스트 공간정보를 실제 공간정보로 변환하여 태깅함으로서 공간정보시스템을 웹의 영역까지 확장할 수 있다. 즉, 기존의 GIS와 결합하여 자신과 가까운 문서의 정보를 검색 또는 관심주제의 문서내 위치 등을 확인하는데 사용할 수 있으며, 이 공간정보를 이용하여 Semantic Web의 지식 링크와 연결하기 위한 기본 시스템으로 이용될 수 있다.

  • PDF

정보검색 기법을 이용한 효율적인 자동 키워드 태깅 (An Efficient Method of IR-based Automated Keyword Tagging)

  • 김진숙;최호섭;류범종
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.24-27
    • /
    • 2008
  • 위키피디아의 백과사전에서 보여주는 바와 같이 주요한 용어에 대한 링크를 통한 태깅은 문서의 가독성을 크게 향상시킨다. 웹 2.0에서도 사회적 태깅(Social Tagging)의 중요성이 부각되고 있으며 시멘틱웹의 태그클라우드(Tag Cloud) 형태로 발전하고 있다. 본 논문에서는 대용량 통제어 사전에 등재된 주요 용어를 대상문서에 태깅하는 방법에 대해 연구결과를 제시한다. 기본적으로 사전에 있는 모든 용어(항목수 N)를 주어진 문서(길이 m)에서의 출현 여부를 문자열탐색을 통해 비교하여 태깅하는 방식은 O(mN)의 계산복잡도를 가진다. 그러나 본 논문에서 제시하는 바와 같이 정보검색을 이용할 경우에는 계산복잡도를 O(mlogN)으로 줄일 수 있었다. 정보검색을 활용하면 단순문자열 탐색에 비해서 평균 17.8배, 빠른 문자열탐색 알고리즘에 비해서도 평균 5.6배 이상 태깅 속도가 향상되었다.

  • PDF

A Study on Recommendation Method Based on Web 3.0

  • Kim, Sung Rim;Kwon, Joon Hee
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.43-51
    • /
    • 2012
  • Web 3.0 is the next-generation of the World Wide Web and is included two main platforms, semantic technologies and social computing environment. The basic idea of web 3.0 is to define structure data and link them in order to more effective discovery, automation, integration, and reuse across various applications. The semantic technologies represent open standards that can be applied on the top of the web. The social computing environment allows human-machine co-operations and organizing a large number of the social web communities. In the recent years, recommender systems have been combined with ontologies to further improve the recommendation by adding semantics to the context on the web 3.0. In this paper, we study previous researches about recommendation method and propose a recommendation method based on web 3.0. Our method scores documents based on context tags and social network services. Our social scoring model is computed by both a tagging score of a document and a tagging score of a document that was tagged by a user's friends.

대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템 (A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus)

  • 박준혁;이성욱;임윤섭;최종석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.213-222
    • /
    • 2019
  • 지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.