• 제목/요약/키워드: Semantic Social Network

검색결과 173건 처리시간 0.02초

Relations between Reputation and Social Media Marketing Communication in Cryptocurrency Markets: Visual Analytics using Tableau

  • Park, Sejung;Park, Han Woo
    • International Journal of Contents
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • 제18권2호
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

현대 소비자의 공간소비행동에 관한 연구 -소셜미디어 데이터 분석을 중심으로- (A Study on Space Consumption Behavior of Contemporary Consumers -Focusing on Analysis of Social Media Big Data-)

  • 안서영;고애란
    • 한국의류학회지
    • /
    • 제44권5호
    • /
    • pp.1019-1035
    • /
    • 2020
  • This study examines the millennial generation, who express themselves and share information on social media after experiencing constantly changing 'hot places' (places of interest) in contemporary cities, with the goal of analyzing space consumption behaviors. Data were collected via an Instagram crawler application developed with Python 3.4 administered to 19,262 posts using the term 'hot places' from November 1 and December 15, 2019. Issues were derived from a text mining technique using Textom 2.0; in addition, semantic network analysis using Ucinet6 and the NetDraw program were also conducted. The results are as follows. First, a frequency analysis of keywords for hot places indicated words frequently found in nouns were related to food, local names, SNS and timing. Words related to positive emotions felt in experience, and words related to behavior in hot places appeared in predicate. Based on importance, communication is the most important keyword and influenced all issues. Second, the results of visualization of semantic network analysis revealed four categories in the scope of the definition of "hot place": (1) culinary exploration, (2) atmosphere of cafés, (3) happy daily life of 'me' expressed in images, (4) emotional photos.

网络流行语"X+人"探析 - 从"打工人", "尾款人", "工具人"等谈起

  • 유철
    • 중국학논총
    • /
    • 제71호
    • /
    • pp.41-59
    • /
    • 2021
  • With the progress of social economy and science and technology, network media technology has developed rapidly, China has ushered in the network information age, and the network buzzwords emerged to reflect the interaction and influence between language and society. The network buzzwords of "X+ ren "indirectly show the social psychology and value orientation of modern people with their unique structural characteristics, semantic connotation and cultural deposits, and so on. Based on this, we have conducted a multi-angle investigation on the network buzzwords "X+ ren". This paper first analyzes the structure types and syntactic functions of the lexical model of "X+ ren ", then makes a semantic analysis of the lexical model of "X+ Ren ", and finally investigates the causes and influences of the popularity of "X+ ren ". Through the investigation, we believe that "X+ ren "will continue to grow, and "X+ ren" will continue to attract the attention of the academic community.

We Love or Hate When Celebrities Speak Up about Climate Change: Receptivity to Celebrity Involvement in Environmental Campaigns

  • Park, Sejung
    • Journal of Contemporary Eastern Asia
    • /
    • 제18권1호
    • /
    • pp.175-188
    • /
    • 2019
  • This study investigates public receptivity to celebrity's climate change advocacy on YouTube through a semantic network analysis. The results of this study suggest that the YouTube video generated a number of viewers' responses. Celebrity endorsement not only leaded public voices on climate change issue, but also their opinions on the celebrity endorser. This study found that most of viewers were polarized in their judgment and attitude toward the celebrity advocate either positively or negatively. This study offers an exploratory examination of the perceived star power and the role of celebrities as spokespersons for social causes. This study contributes to the theoretical foundation of the role of celebrity advocacy using social media. In addition, this study offers methodological insights into how to detect public perceptions and attitudes toward celebrity endorsement of social causes by analyzing public comments.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

How do People Understand and Express "Smart City?": Analysis of Transition in Smart-city Keywords through Semantic Network Analysis of SNS Big Data between 2011 and 2020

  • Kim, Seong-A;Kim, Heungsoon
    • Architectural research
    • /
    • 제24권2호
    • /
    • pp.41-52
    • /
    • 2022
  • The purpose of this study is to grasp the understanding of smart cities and to review whether the common perception of smart cities, as people understand it, is changing over time. This study analyzes keywords related to smart cities used in social network services (SNSs) in 2011, 2016, and 2020 respectively through semantic network analysis. Smart city discussions appearing on SNS in 2011 mainly focused on technology, and the results of 2016 were generally similar to those of 2011. We can also find policy or business-oriented characteristics in emerging countries in 2020. We highlight that all the results of 2011, 2016, and 2020 have some correlation with each other through QAP(Quadratic Assignment Procedure) correlation analysis, and among them, the correlation between 2011 and 2016 is analyzed the most. The results of the frequency analysis, centrality analysis, and CONCOR(CONvergence of interaction CORrelation) analysis support these results. The results of this study help establish policies that reflect the needs and opinions of citizens in planning smart cities by identifying trends and paradigm transitions expressed by people in SNS. Furthermore, it is expected to help emerging countries by enhancing the understanding of the essence and trend of smart cities and to contribute by suggesting the direction of more sustainable technology development in future smart city policies for leading countries.

한국한의학연구원 시맨틱 소셜 네트워크 시스템 구축 (A Semantic Social Network System in Korea Institute of Oriental Medicine)

  • 김상균;장현철;김철;예상준;김진현;송미영
    • 한국한의학연구원논문집
    • /
    • 제16권2호
    • /
    • pp.91-99
    • /
    • 2010
  • In this paper, we designed and implemented a semantic social network system in Korea Institute of Oriental Medicine (abbreviated as KIOM). Our social network system provides the capabilities such as tracking search, ontology reasoning, ontology graph view, and personal information input, update and management. Tracking search provides the search results by the research information of relevant researchers using ontology, in addition to those by keywords. Ontology reasoning provides the reasoning for experts, mentors, and personal contacts. Users can easily browse the personal connections among researchers by traversing the ontology by graph viewer. These allows KIOM researchers to search other researchers who could aid the researches and to easily share their research information.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

패션 크리에이티브 디렉터 변화에 따른 디자인 연관 이슈 비교 - 구찌 컬렉션에 대한 소셜미디어 게시글 분석을 중심으로 - (Comparison of Design Related Issues with the Replacement of Fashion Creative Director - Focused on an Analysis of Social Media Posts on Gucci Collection -)

  • 안효선;박민정
    • 한국의류산업학회지
    • /
    • 제21권3호
    • /
    • pp.277-287
    • /
    • 2019
  • This study analyzes the online issues of design innovation by a fashion creative director. The study selected fashion house Gucci as the main subject and analyzed social media posts. As for study methods, a social matrix program Textom 2.0 collected 13,014 nouns and adjectives using 'Gucci Collection' as a search keyword from Naver Blogs from March to August 2014 and from March to August 2016. Design related issues were derived through semantic network analysis using Ucinet6 and the NetDraw program. The results of the keyword frequency analysis showed that social media user interest for the Gucci collection increased based on the rapid increase in the number of posts from 1,064 to 2,126 after changing the fashion creative director. The results of visualization of semantic network analysis and content analysis also showed that the main issues related to the Gucci collection design changed after the replacement of the fashion creative director. The study found that issues formed around the product information worn by celebrities for promotion purposes during the 2014 period; however, during the 2016 period, issues were formed around 'vintage' and 'retro' runway concepts with design styles related to Alessandro Michele, the new creative director.