• 제목/요약/키워드: Semantic Role Assignment

검색결과 5건 처리시간 0.02초

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템 (Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing)

  • 박경미;문영성
    • 정보처리학회논문지B
    • /
    • 제17B권1호
    • /
    • pp.85-92
    • /
    • 2010
  • 부분 의미 분석 시스템은 문장의 구성 요소들이 술어와 갖는 관계를 분석하는 것으로 문장에서 술어의 주체, 객체, 도구 등을 나타내는 의미 논항을 확인하게 된다. 본 논문에서 개발한 부분 의미 분석 시스템은 두 단계로 구성되어 있는데, 먼저 부분 구문 분석 결과로부터 의미 논항의 경계를 찾는 의미 논항 확인 단계를 수행하고 다음으로 확인된 의미 논항에 적절한 의미역을 부착하는 의미역 할당 단계를 수행한다. 순차적인 두 단계 방법을 적용하는 것에 의해서, 학습 성능 저하의 주요한 원인인 클래스 분포의 불균형 문제를 완화할 수 있고, 각 단계에 적합한 자질을 선별하여 사용할 수 있다. 본 논문에서는 PropBank 말뭉치에 기반한 CoNLL-2004 shared task의 데이터 집합 및 평가 프로그램을 사용하여 각 단계가 시스템의 전체 성능에 기여하는 정도를 보인다.

세종전자사전을 이용한 한국어 부사격의 의미역 결정 (Semantic Role Assignment for Korean Adverbial Case Using Sejong Electronic Dictionary)

  • 신명철;이용훈;김미영;정유진;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.120-126
    • /
    • 2005
  • 세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.

  • PDF

기능동사 구문과 개념 유사도를 이용한 한국어 부사격의 의미역 결정 (Semantic Role Assignment for Korean Adverbial Case Using Support Verb Phrase and Concept Similarity)

  • 신명철;이용훈;김미영;정유진;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.451-453
    • /
    • 2005
  • 본 논문에서는 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 모델에 대해 다루고 있다. 의미역 결정은 의미 분석의 핵심 과정 중 하나이고 자연언어처리에서 해결해야 할 중요한 문제이다. 본 논문은 기존 연구와 언어학 논저를 참고해서 의미역 결정에 유용한 자질들을 정리하였고 SVM을 이용하여 의미역 결정 모델을 구축하였다. 또한 기존 연구와 차별적으로 기능동사 구문의 처리와 지배소 개념의 유사도 보정 방법을 사용하여 보다 견고한 모델을 만들 수 있었다. 성능 평가 결과 개념(Concept)만을 사용한 기본 모델에 비해서 평균 $9\%$의 정확률 향상을 보였다.

  • PDF

부트스트래핑 알고리즘을 이용한 한국어 격조사의 의미역 결정 (Bootstrapping for Semantic Role Assignment of Korean Case Marker)

  • 김병수;이용훈;나승훈;김준기;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.4-6
    • /
    • 2006
  • 본 논문은 자연언어처리에서 문장의 서술어와 그 서술어가 가지는 명사 논항들 사이의 문법관계를 의미 관계로 사상하는 즉 논항이 서술어에 대해 가지는 역할을 정하는 문제를 다루고 있다. 의미역 결정은 단어의 의미 중의성 해소와 함께 자연언어의 의미 분석의 핵심 문제 중 하나이며 반드시 해결해야 하는 매우 중요한 문제 중 하나이다. 본 연구에서는 언어학적으로 유용한 자원인 세종전자사전을 이용하여 용언격틀사전을 구축하고 격틀 선택 방법으로 의미역을 결정한 후. 결정된 의미역들에 대한 확률 정보를 확률 모델에 적용하여 반복적으로 학습하는 부트스트래핑(Bootstrapping) 알고리즘을 사용하였다. 실험 결과, 기본 모델에 대해 10% 정도의 성능 향상을 보였다.

  • PDF