• Title/Summary/Keyword: Semantic Role Assignment

Search Result 5, Processing Time 0.017 seconds

Assignment Semantic Category of a Word using Word Embedding and Synonyms (워드 임베딩과 유의어를 활용한 단어 의미 범주 할당)

  • Park, Da-Sol;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.946-953
    • /
    • 2017
  • Semantic Role Decision defines the semantic relationship between the predicate and the arguments in natural language processing (NLP) tasks. The semantic role information and semantic category information should be used to make Semantic Role Decisions. The Sejong Electronic Dictionary contains frame information that is used to determine the semantic roles. In this paper, we propose a method to extend the Sejong electronic dictionary using word embedding and synonyms. The same experiment is performed using existing word-embedding and retrofitting vectors. The system performance of the semantic category assignment is 32.19%, and the system performance of the extended semantic category assignment is 51.14% for words that do not appear in the Sejong electronic dictionary of the word using the word embedding. The system performance of the semantic category assignment is 33.33%, and the system performance of the extended semantic category assignment is 53.88% for words that do not appear in the Sejong electronic dictionary of the vector using retrofitting. We also prove it is helpful to extend the semantic category word of the Sejong electronic dictionary by assigning the semantic categories to new words that do not have assigned semantic categories.

Two-Phase Shallow Semantic Parsing based on Partial Syntactic Parsing (부분 구문 분석 결과에 기반한 두 단계 부분 의미 분석 시스템)

  • Park, Kyung-Mi;Mun, Young-Song
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.85-92
    • /
    • 2010
  • A shallow semantic parsing system analyzes the relationship that a syntactic constituent of the sentence has with a predicate. It identifies semantic arguments representing agent, patient, instrument, etc. of the predicate. In this study, we propose a two-phase shallow semantic parsing model which consists of the identification phase and the classification phase. We first find the boundary of semantic arguments from partial syntactic parsing results, and then assign appropriate semantic roles to the identified semantic arguments. By taking the sequential two-phase approach, we can alleviate the unbalanced class distribution problem, and select the features appropriate for each task. Experiments show the relative contribution of each phase on the test data.

Semantic Role Assignment for Korean Adverbial Case Using Sejong Electronic Dictionary (세종전자사전을 이용한 한국어 부사격의 의미역 결정)

  • Shin, Myung-Chul;Lee, Yong-Hun;Kim, Mi-Young;Chung, You-Jin;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.120-126
    • /
    • 2005
  • 세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.

  • PDF

Semantic Role Assignment for Korean Adverbial Case Using Support Verb Phrase and Concept Similarity (기능동사 구문과 개념 유사도를 이용한 한국어 부사격의 의미역 결정)

  • Shin Myung-Chul;Lee Yong-Hun;Kim Mi-Young;Chung You-Jin;Lee Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.451-453
    • /
    • 2005
  • 본 논문에서는 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 모델에 대해 다루고 있다. 의미역 결정은 의미 분석의 핵심 과정 중 하나이고 자연언어처리에서 해결해야 할 중요한 문제이다. 본 논문은 기존 연구와 언어학 논저를 참고해서 의미역 결정에 유용한 자질들을 정리하였고 SVM을 이용하여 의미역 결정 모델을 구축하였다. 또한 기존 연구와 차별적으로 기능동사 구문의 처리와 지배소 개념의 유사도 보정 방법을 사용하여 보다 견고한 모델을 만들 수 있었다. 성능 평가 결과 개념(Concept)만을 사용한 기본 모델에 비해서 평균 $9\%$의 정확률 향상을 보였다.

  • PDF

Bootstrapping for Semantic Role Assignment of Korean Case Marker (부트스트래핑 알고리즘을 이용한 한국어 격조사의 의미역 결정)

  • Kim Byoung-Soo;Lee Yong-Hun;Na Seung-Hoon;Kim Jun-Gi;Lee Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.4-6
    • /
    • 2006
  • 본 논문은 자연언어처리에서 문장의 서술어와 그 서술어가 가지는 명사 논항들 사이의 문법관계를 의미 관계로 사상하는 즉 논항이 서술어에 대해 가지는 역할을 정하는 문제를 다루고 있다. 의미역 결정은 단어의 의미 중의성 해소와 함께 자연언어의 의미 분석의 핵심 문제 중 하나이며 반드시 해결해야 하는 매우 중요한 문제 중 하나이다. 본 연구에서는 언어학적으로 유용한 자원인 세종전자사전을 이용하여 용언격틀사전을 구축하고 격틀 선택 방법으로 의미역을 결정한 후. 결정된 의미역들에 대한 확률 정보를 확률 모델에 적용하여 반복적으로 학습하는 부트스트래핑(Bootstrapping) 알고리즘을 사용하였다. 실험 결과, 기본 모델에 대해 10% 정도의 성능 향상을 보였다.

  • PDF