• Title/Summary/Keyword: Semantic Knowledge-based Model

Search Result 114, Processing Time 0.028 seconds

Research of Knowledge Management and Reusability in Streaming Big Data with Privacy Policy through Actionable Analytics (스트리밍 빅데이터의 프라이버시 보호 동반 실용적 분석을 통한 지식 활용과 재사용 연구)

  • Paik, Juryon;Lee, Youngsook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • The current meaning of "Big Data" refers to all the techniques for value eduction and actionable analytics as well management tools. Particularly, with the advances of wireless sensor networks, they yield diverse patterns of digital records. The records are mostly semi-structured and unstructured data which are usually beyond of capabilities of the management tools. Such data are rapidly growing due to their complex data structures. The complex type effectively supports data exchangeability and heterogeneity and that is the main reason their volumes are getting bigger in the sensor networks. However, there are many errors and problems in applications because the managing solutions for the complex data model are rarely presented in current big data environments. To solve such problems and show our differentiation, we aim to provide the solution of actionable analytics and semantic reusability in the sensor web based streaming big data with new data structure, and to empower the competitiveness.

A Study of Effective Creating Methods of Philosophy Digital Knowledge Resources (철학 디지털 지식 자원의 효과적인 구축 방향에 대한 연구)

  • Choi Byung-Il;Chung Hyun-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.39-51
    • /
    • 2005
  • A study of philosophy is a process that archive, reorganize and analyze the earlier works to discover new facts. Philosophy digital resources is necessary to research philosophy because they provide lots of electronic texts, philosophical information, forums, etc. In this paper, we introduce . our result of a research on philosophy digital resources existing in domestic or oversea web sites. We describe the problems which existing resources have and our solution to solve them. Also we provide a guideline to creating philosophy ontology based on topic maps which are data model of ontology. Our philosophy ontology defines hierarchy and associative relationships between philosophical knowledge and support retrieval and exploring of knowledge using semantic information.

  • PDF

Real-time and Parallel Semantic Translation Technique for Large-Scale Streaming Sensor Data in an IoT Environment (사물인터넷 환경에서 대용량 스트리밍 센서데이터의 실시간·병렬 시맨틱 변환 기법)

  • Kwon, SoonHyun;Park, Dongwan;Bang, Hyochan;Park, Youngtack
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.54-67
    • /
    • 2015
  • Nowadays, studies on the fusion of Semantic Web technologies are being carried out to promote the interoperability and value of sensor data in an IoT environment. To accomplish this, the semantic translation of sensor data is essential for convergence with service domain knowledge. The existing semantic translation technique, however, involves translating from static metadata into semantic data(RDF), and cannot properly process real-time and large-scale features in an IoT environment. Therefore, in this paper, we propose a technique for translating large-scale streaming sensor data generated in an IoT environment into semantic data, using real-time and parallel processing. In this technique, we define rules for semantic translation and store them in the semantic repository. The sensor data is translated in real-time with parallel processing using these pre-defined rules and an ontology-based semantic model. To improve the performance, we use the Apache Storm, a real-time big data analysis framework for parallel processing. The proposed technique was subjected to performance testing with the AWS observation data of the Meteorological Administration, which are large-scale streaming sensor data for demonstration purposes.

The Design of Component Repository Management System for Semantic Web (시멘틱 웹 기반 컴포넌트 저장소 관리 시스템 설계)

  • Kim, Yang-Hoon;Jang, Joon-Sik;Kim, Guk-Boh
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • According to the development of information & web technology and the amount of information increases, there have been numerous problems exposed. Although, software engineers try to overcome the limitations by using software agent and web service, there hasn't been satisfactory result in the paradigm of current software agent being a provider to the user's demand. Moreover, the latest configuration of software development is based on CBD (Component Based Development). However, to construct new component using CBD costs great deal of expenses and therefore, a new model which can acquirecomponent information on the web promptly and accurately with low expenses is required. In this paper, the repository management system which acquires and manages on the Semantic web is designed and compare them to the existing component repository management and present its analysis result. In addition, to overcome the limitations of existing component repository system; low accuracy of search result, restrictive search vocabulary and faulty information, the specific plan is presented to perform a knowledge search for the component.

  • PDF

Building Concept Networks using a Wikipedia-based 3-dimensional Text Representation Model (위키피디아 기반의 3차원 텍스트 표현모델을 이용한 개념망 구축 기법)

  • Hong, Ki-Joo;Kim, Han-Joon;Lee, Seung-Yeon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2015
  • A concept network is an essential knowledge base for semantic search engines, personalized search systems, recommendation systems, and text mining. Recently, studies of extending concept representation using external ontology have been frequently conducted. We thus propose a new way of building 3-dimensional text model-based concept networks using the world knowledge-level Wikipedia ontology. In fact, it is desirable that 'concepts' derived from text documents are defined according to the theoretical framework of formal concept analysis, since relationships among concepts generally change over time. In this paper, concept networks hidden in a given document collection are extracted more reasonably by representing a concept as a term-by-document matrix.

Semantic Computing-based Dynamic Job Scheduling Model and Simulation (시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델 및 시뮬레이션)

  • Noh, Chang-Hyeon;Jang, Sung-Ho;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.29-38
    • /
    • 2009
  • In the computing environment with heterogeneous resources, a job scheduling model is necessary for effective resource utilization and high-speed data processing. And, the job scheduling model has to cope with a dynamic change in the condition of resources. There have been lots of researches on resource estimation methods and heuristic algorithms about how to distribute and allocate jobs to heterogeneous resources. But, existing researches have a weakness for system compatibility and scalability because they do not support the standard language. Also, they are impossible to process jobs effectively and deal with a variety of computing situations in which the condition of resources is dynamically changed in real-time. In order to solve the problems of existing researches, this paper proposes a semantic computing-based dynamic job scheduling model that defines various knowledge-based rules for job scheduling methods adaptable to changes in resource condition and allocate a job to the best suited resource through inference. This paper also constructs a resource ontology to manage information about heterogeneous resources without difficulty as using the OWL, the standard ontology language established by W3C. Experimental results shows that the proposed scheduling model outperforms existing scheduling models, in terms of throughput, job loss, and turn around time.

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

A Study on the Development of a Classification Model for Terminological Relationships (용어관계의 분류 모형 개발에 관한 연구)

  • Baek, Ji-Won;Chung, Yeon-Kyoung
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.63-81
    • /
    • 2006
  • The purpose of this study is to present the limitation of terminological relationships in the current information environment and to propose a solution to result in the richer and refined terminological resources. For this, various kinds of terminological relationships in knowledge organization systems and theoretical researches were collected and analyzed. Based upon the analysis, a methodology for classification of terminological relationships was suggested and classification models were presented. Additionally, four suggestions were made for the practical uses of the classification models.

A Model for Ranking Semantic Associations in a Social Network (소셜 네트워크에서 관계 랭킹 모델)

  • Oh, Sunju
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.93-105
    • /
    • 2013
  • Much Interest has focused on social network services such as Facebook and Twitter. Previous research conducted on social network often emphasized the architecture of the social network that is the existence of path between any objects on network and the centrality of the object in the network. However, studies on the semantic association in the network are rare. Studies on searching semantic associations between entities are necessary for future business enhancements. In this research, the ontology based social network analysis is performed. A new method to search and rank relation sequences that consist of several relations between entities is proposed. In addition, several heuristics to measure the strength of the relation sequences are proposed. To evaluate the proposed method, an experiment was performed. A group of social relationships among the university and organizations are constructed. Some social connections are searched using the proposed ranking method. The proposed method is expected to be used to search the association among entities in ontology based knowledge base.

Face Super-Resolution using Adversarial Distillation of Multi-Scale Facial Region Dictionary (다중 스케일 얼굴 영역 딕셔너리의 적대적 증류를 이용한 얼굴 초해상화)

  • Jo, Byungho;Park, In Kyu;Hong, Sungeun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.608-620
    • /
    • 2021
  • Recent deep learning-based face super-resolution (FSR) works showed significant performances by utilizing facial prior knowledge such as facial landmark and dictionary that reflects structural or semantic characteristics of the human face. However, most of these methods require additional processing time and memory. To solve this issue, this paper propose an efficient FSR models using knowledge distillation techniques. The intermediate features of teacher network which contains dictionary information based on major face regions are transferred to the student through adversarial multi-scale features distillation. Experimental results show that the proposed model is superior to other SR methods, and its effectiveness compare to teacher model.