• 제목/요약/키워드: Semantic Inference

검색결과 139건 처리시간 0.02초

목적어 생략에 대한 동사의 의미표상 및 추론의 역할 (The Role of Semantic Representation of Verbs and Inference in the Interpretation of Missing Objects in Korean Discourse)

  • 조숙환
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.457-461
    • /
    • 2001
  • 본 논문은 동사의 의미표상과 명사의 한정성의 강호관계를 중심으로 목적어의 생략현상을 검토하였다. 한국어는 영어 같은 언어와 달리 주어, 목적어 등이 자주 생략된다. 이 연구는 한국어의 목적어 생략이 단순히 인간성 (humanness), 주체성 (agency), 한정성(definiteness) 등 명사의 의미자질에 의해서만 결정되는 것이 아니라, 다음 두 가지 제약이 결정적으로 작용함을 제안하고자 한다. 첫째, 목적어 생략은 행동양상 (mold of agent act)과 원인 (cause)을 심층적으로 포함하는 소위 '핵심 타동사 (core transitive)'와 선행사의 한정성 정도에 의해 결정되는데, 구체적으로 목적어 생략은 한정성 자질을 가진 선행사가 없는 담화에서는 허용되지 않는다는 제약이다. 둘째, 타동사와 명사의 한정성과는 독립적으로, 한국어의 목적어 생략은 또한, 추론에 의거하여 보다 더 적절히 해석될 수 있는 경우를 실증적으로 보이고자 한다.

  • PDF

OntoFrame: 시맨틱 웹 기반의 추론 서비스 (OntoFrame: Semantic Web-based Inference Service)

  • 이미경;정한민;성원경
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2008년도 추계학술대회
    • /
    • pp.349-352
    • /
    • 2008
  • 본 논문에서는 시맨틱 웹 기반의 학술 정보 분석 서비스 프레임워크인 OntoFrame에 대해 소개하고자 한다. 2005년부터 개발되기 시작한 OntoFrame은 매년 새로운 서비스와 기술로 확장되고 있으며 OntoFrame2008에서는 다중 키워드 기반의 검색 서비스 및 다중 개체 중심적 통합 검색기능을 제공한다. 본 서비스는 키워드의 개체를 판단한 후에 인력, 주제, 인력+주제에 해당하는 서비스 API를 호출하여 추론 서비스 페이지를 구성한다. 이때 시스템에서 자동으로 판단되는 개체의 모호함을 제거하기 위해서 사용자의 의도라고 판단되는 최적의 개체 조합 페이지뿐만 아니라 해당 키워드에서 나타날 수 있는 모든 개체 조합의 후보 페이지들을 제공해주어 시스템의 일방적인 추천 서비스의 단점을 없앴다. 그리고 서비스의 결과로 제공되는 페이지에서 링크를 통한 추가조건 검색도 제공해 주어 사용자의 검색 의도를 정확하게 파악하여 편리한 정보 획득을 도와주는 시스템으로 개발하고 있다. OntoFrame2008은 여러 가지 풍부한 분석 서비스를 제공하여 연구자들이 학술 정보 검색 과정에 많은 도움이 되는 추론 서비스를 제공하고 있다.

  • PDF

질의 추론을 통한 온톨로지기반 시맨틱 검색 시스템의 성능 향상 (Performance Enhancement of A Ontology-based Semantic Search System with Query Inference)

  • 하상범;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.157-159
    • /
    • 2004
  • 시맨틱 웹 기술을 활용한 시맨틱 검색은 문서의 의미를 온톨로지의 메타데이터로 생성하여 이를 바탕으로 검색을 수행하게 된다. 이와같은 온톨로지 기반의 시맨틱 검색은 논리를 바탕으로 추론을 적용할 수 있다. 본 논문에서는 온톨로지 기반의 추론을 적용한 시맨틱 검색 시스템을 언급하고 시맨틱 검색 시스템에서의 성능향상을 위해 추론엔진의 작업메모리 영역의 부하를 줄여 기존의 시스템보다 빠른 성능의 시맨틱 검색 시스템을 제안한다. 본 논문에서 시맨틱 검색 시스템의 성능향상을 위한 방법론으로는 다음과 같다 첫째, 추론엔진이 검색 도메인내의 전체 메타데이터를 가지고 추론을 수행하지 않고 메타데이터의 온톨로지부분 만을 사용하여 사용자가 원하는 질의문을 추론하여 검색에 사용하게 한다. 둘째, 시맨틱 검색 방법에서 Dirtectly 매칭 검색과 시맨틱 추론검색을 병행하여 수행하게 한다. 이를 위해 본 논문에서는 메타데이터의 온톨로지부분과 인스턴스부분을 분리하는 단계와 분리된 온톨로지부분에서 사용자가 원하는 질의를 추론하는 단계, 추론된 질의문을 검색시스템에서 매칭하는 단계를 수행하게 된다. 이러한 방법은 메타데이터의 양이 증가하여도 온톨로지부분은 증가하지 않으므로 추론엔진에서 전 방향 추론단계의 수행시간을 단축과 추론엔진의 호출 횟수를 단축시키는 결과를 가져온다.

  • PDF

초점 현상과 담화 영역 (Focus and Discourse Domain.)

  • 위혜경
    • 한국언어정보학회지:언어와정보
    • /
    • 제8권1호
    • /
    • pp.1-26
    • /
    • 2004
  • This paper investigates the nature of the discourse domain involved with focus sentences. The major theories of focus including Roothian Alternative Semantics are critically reviewed: Alternative Semantics takes a contradictory attitude toward the truth conditional aspect of free focus. The truth conditional differences are treated as a pragmatic inference, while they are captured by the semantic mechanism, that is, the alternative sets generated by focus constructions. In addition, the alternative sets are ad hoc since they are generated only for focus constructions. This paper attempts to show that the alternative sets introduced by foci in the framework of Alternative Semantics are neither necessary nor sufficient for an analysis of focus. It is argued that the domain sets simply provided by the model itself suffices for a proper analysis of focus constructions.

  • PDF

RDF 웹 문서의 부분적인 정보 은닉과 관련한 접근 권한 충돌 문제의 분석 (Analysis of Access Authorization Conflict for Partial Information Hiding of RDF Web Document)

  • 김재훈;박석
    • 정보보호학회논문지
    • /
    • 제18권2호
    • /
    • pp.49-63
    • /
    • 2008
  • RDF는 W3C의 시맨틱 웹에서 사용하는 기본적인 온톨로지 모델이다. 그리고 더욱 다양한 온톨로지 관계를 정의하는 OWL은 이러한 RDF 기본 모델을 확장한 것이다. 최근 Jain과 Farkas는 RDF에 대한 RDF 트리플에 기반을 둔 접근 제어 모델을 제시하였다. 그들 연구의 초점은 RDF 온톨로지 데이터에서 고려해야 하는 추론에 의한 접근 권한 충돌 문제를 소개한 것이다. 비록 RDF 모델이 XML로 표현되지만, 기존의 XML 접근 제어 모델을 RDF에 적용하기 어려운 것이 바로 이러한 RDF 추론 때문이다. 하지만, Jain과 Farkas는 그들의 연구에서 먼저 RDF 접근 권한 명세시의 권한 전파가 RDF 상/하위 온톨로지 개념에 대하여 어떻게 이루어지는 지를 정의하고 있지 않다. 이것이 중요한 이유는 추론에 의한 권한 충돌의 문제는 결국 권한 명세시의 권한 전파와 권한 추론시의 권한 전파 사이에서의 충돌 문제이기 때문이다. 본 논문에서는 먼저 RDF 트리플에 기반을 둔 RDF 접근 권한 명세 모델에 대하여 자세히 소개한다. 다음으로 이러한 모델을 바탕으로 RDF 추론 시의 권한 충돌 문제를 자세히 분석한다. 다음으로 권한 명세시의 권한 충돌 여부를 신속히 조사하기 위하여 포함 관계 추론과 관련한 그래프 레이블링 기법을 이용하는 방법을 간략히 소개한다. 마지막으로 Jain과 Farkas 연구와의 비교 및 제안된 충돌 발견 알고리즘의 효율성을 보이는 몇 가지 실험 결과를 제시한다.

KOMPSAT 정사모자이크 영상으로부터 U-Net 모델을 활용한 농촌위해시설 분류 (Semantic Segmentation of Hazardous Facilities in Rural Area Using U-Net from KOMPSAT Ortho Mosaic Imagery)

  • 공성현;정형섭;이명진;이광재;오관영;장재영
    • 대한원격탐사학회지
    • /
    • 제39권6_3호
    • /
    • pp.1693-1705
    • /
    • 2023
  • 국토 면적의 약 90%를 차지하는 농촌은 여러가지 공익적 기능을 수행하는 공간으로서 중요성과 가치가 증가하고 있지만 주거지 인근에 축사, 공장, 태양광패널 등 주민생활에 불편을 미치는 시설들이 무분별하게 들어서면서 농촌 환경과 경관이 훼손되고 주민 삶의 질이 낮아지고 있다. 농촌지역의 무질서한 개발을 방지하고 농촌 공간을 계획적으로 관리하기 위해서는 농촌지역 내 위해시설에 대한 탐지 및 모니터링이 필요하다. 주기적으로 취득 가능하고 전체 지역에 대한 정보를 얻을 수 있는 위성영상을 통해 데이터의 취득이 가능하고, 합성곱 신경망 기법을 통한 영상 기반 딥러닝 기술을 활용하여 효과적인 탐지가 가능하다. 따라서 본 연구에서는 의미적 분할(Semantic segmentation)에서 높은 성능을 보이는 U-Net 모델을 이용하여 농촌 지역에서 잠재적으로 위해시설이 될 수 있는 농촌시설을 분류하는 연구를 수행하였다. 본 연구에서는 2020년에 제작된 공간해상도 0.7 m의 KOMPSAT 정사모자이크 광학영상을 한국항공우주연구원으로부터 제공받아 사용하였으며 축사, 공장, 태양광 패널에 대한 AI 학습용 데이터를 직접 제작하여 학습 및 추론을 진행하였다. U-Net을 통해 학습시킨 결과 픽셀 정확도(pixel accuracy)는 0.9739, mean Intersection over Union (mIOU)은 0.7025의 값을 도출하였다. 본 연구 결과는 농촌 지역의 위험 시설물 모니터링에 활용될 수 있으며, 농촌계획 수립에 있어 기초 자료로 활용될 수 있을 것으로 기대된다.

점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상 (Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm)

  • 장정호;이종우;엄재홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1045-1055
    • /
    • 2007
  • 잠재토픽모델(latent topic model)은 데이타에 내재된 특징적 패턴이나 데이타 정의 자질들 간의 상호 관련성을 확률적으로 모델링하고 자동 추출하는 모델로서 최근 텍스트 문서로부터의 의미 자질 자동 추출, 이미지를 비롯한 멀티미디어 데이타 분석, 생물정보학 분야 등에서 많이 응용되고 있다. 이러한 잠재토픽모델의 대규모 데이타에 대한 적용 시 그 효과 증대를 위한 중요한 이슈 중의 하나는 모델의 효율적 학습에 관한 것이다. 본 논문에서는 대표적 잠재토픽모델 중의 하나인 PLSA (probabilistic latent semantic analysis) 기법을 대상으로 점진적 EM 알고리즘을 활용한, 기본 EM 알고리즘 기반의 기존 학습에 대한 학습속도 증진 기법을 제안한다. 점진적 EM 알고리즘은 토픽 추론 시 전체 데이타에 대한 일괄적 E-step 대신에 일부 데이타에 대한 일련의 부분적 E-step을 수행하는 특징이 있으며 이전 데이터 일부에 대한 학습 결과를 바로 다음 데이타 학습에 반영함으로써 모델 학습의 가속화를 기대할 수 있다. 또한 이론적인 측면에서 지역해로의 수렴성이 보장되고 기존 알고리즘의 큰 수정 없이 구현이 용이하다는 장점이 있다. 논문에서는 해당 알고리즘의 기본적인 응용과 더불어 실제 적용과정 상에서의 가능한 데이터 분할법들을 제시하고 모델 학습 속도 개선 면에서의 성능을 실험적으로 비교 분석한다. 실세계 뉴스 문서 데이타에 대한 실험을 통해, 제안하는 기법이 기존 PLSA 학습 기법에 비해 유의미한 수준에서 학습 속도 증진을 달성할 수 있음을 보이며 추가적으로 모델의 병렬 학습 기법과의 조합을 통한 실험 결과를 간략히 제시한다.

SWAT: 분산 인-메모리 시스템 기반 SWRL과 ATMS의 효율적 결합 연구 (SWAT: A Study on the Efficient Integration of SWRL and ATMS based on a Distributed In-Memory System)

  • 전명중;이완곤;바트셀렘;박현규;박영택
    • 정보과학회 논문지
    • /
    • 제45권2호
    • /
    • pp.113-125
    • /
    • 2018
  • 최근 빅데이터의 시대가 도래하여 다양한 분야로부터 다량의 지식을 얻을 수 있다. 수집된 지식은 정형화된 형태의 지식으로 가공하여 표현되며, 그 중 W3C의 온톨로지 표준 언어인 OWL이 대표적인 정형화 표현 형식이다. 이렇게 표현된 대용량의 온톨로지로부터 내재된 정보를 도출하기 위해 다양한 방법의 심볼릭 추론(Symbolic Reasoning) 연구가 활발하게 진행되고 있다. 그러나 대부분의 추론 연구들은 서술논리(Description Logic)표현 기반의 제한적인 규칙표현을 지원하며 실생활 기반의 서비스를 구축하기에는 많은 제약이 따른다. 또한 잘못된 지식으로부터 도출된 결과는 규칙들 사이의 종속관계에 따라 연쇄적으로 잘못된 지식이 생산될 수 있기 때문에 이러한 잘못된 지식에 대한 처리를 위한 지식관리가 필요하다. 따라서 본 논문에서는 해당 문제를 해결하기 위해 SWRL(Semantic Web Rule Language) 기반의 추론과 ATMS(Assumption-based Truth Maintenance System)간의 결합을 통해 새롭게 도출된 지식에 대한 관리를 할 수 있는 SWAT(SWRL + ATMS) 시스템을 제안한다. 또한 이 시스템은 대용량 데이터를 처리하기 위해 분산 인-메모리 프레임워크 기반의 SWRL추론과 ATMS를 병합 구축하였으며 이를 바탕으로 웹 형태의 ATMS 모니터링 시스템을 통하여 사용자가 손쉽게 잘못된 지식을 검색 및 수정할 수 있도록 한다. 본 논문에서 제안하는 방법에 대한 평가를 위해 LUBM(Lehigh University Benchmark)데이터 셋을 사용하였으며, 대용량 데이터에 대한 SWRL 추론과 잘못 추론된 정보에 대한 삭제를 통해 효율적인 추론과 관리가 가능한 결합 방법임을 증명한다.

모바일 기반 개인 맞춤형 의료서비스 지원 시스템 설계 및 구현 (Design and Implementation of Support System for Personalized Medical Service Based on Mobile)

  • 서정석;박석천
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.37-45
    • /
    • 2013
  • 본 논문에서는 최근 네트워크를 이용한 온라인 원격 진료 서비스가 논의되고 있는 시점에 맞춰 환자에게 적합한 의료기관을 매칭하는 개인 맞춤형 의료서비스 지원 시스템을 제안한다. 본 시스템을 설계하기 위해 개인 맞춤형 의료서비스 지원 시스템의 요구사항을 파악하여 데이터를 표준화하였고 서버와 클라이언트 구조로 아키텍처를 설계하였다. 또한 설계한 시스템을 구현하기 위해 서버와 클라이언트, 온톨로지 저장소의 구조를 정의하고 시스템을 구현하였다. 본 논문에서 설계 및 구현한 개인 맞춤형 의료서비스 지원 시스템을 테스트하기 위해 가정 사항과 시나리오를 작성하여 테스트를 수행한 결과 환자 증상을 선택하면 선택된 증상별로 진료과가 추론이 되고 환자가 원하는 의료기관의 항목에 따라 1차 추론되 진료과에 맞는 의료기관이 추론이 되는 것을 확인하였다.

미디어 온톨로지의 시공간 정보 확장을 위한 분산 인메모리 기반의 대용량 RDFS 추론 및 질의 처리 엔진 (Distributed In-Memory based Large Scale RDFS Reasoning and Query Processing Engine for the Population of Temporal/Spatial Information of Media Ontology)

  • 이완곤;이남기;전명중;박영택
    • 정보과학회 논문지
    • /
    • 제43권9호
    • /
    • pp.963-973
    • /
    • 2016
  • 대용량 미디어 온톨로지를 이용하여 의미 있는 지능형 서비스를 제공하기 위해 기존의 Axiom 추론뿐만 아니라 다양한 추론을 활용하는 지식 확장이 요구되고 있다. 특히 시공간 정보는 인공지능 응용분야에서 중요하게 활용될 수 있고, 시공간 정보의 표현과 추론에 대한 중요도는 지속적으로 증가하고 있다. 따라서 본 논문에서는 공간 정보를 추론에 활용하기 위해서 공공 주소체계에 대한 LOD를 대용량 미디어 온톨로지에 추가하고, 이러한 대용량 데이터 처리를 위해 인메모리 기반의 분산 처리 프레임워크를 활용하는 공간 추론을 포함하는 RDFS 추론 시스템을 제안한다. 또한 추론을 통해 확장된 데이터를 포함하는 대용량 온톨로지 데이터를 대상으로 하는 분산 병렬 시공간 SPARQL 질의 처리 방법에 대해서 설명한다. 제안하는 시스템의 성능을 측정하기 온톨로지 추론과 질의 처리 벤치 마킹을 위한 LUBM과 BSBM 데이터셋을 대상으로 실험을 진행했다.