• Title/Summary/Keyword: Selfish

Search Result 149, Processing Time 0.019 seconds

Thwarting Sybil Attackers in Reputation-based Scheme in Mobile Ad hoc Networks

  • Abbas, Sohail;Merabti, Madjid;Kifayat, Kashif;Baker, Thar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6214-6242
    • /
    • 2019
  • Routing in mobile ad hoc networks is performed in a distributed fashion where each node acts as host and router, such that it forwards incoming packets for others without relying on a dedicated router. Nodes are mostly resource constraint and the users are usually inclined to conserve their resources and exhibit selfish behaviour by not contributing in the routing process. The trust and reputation models have been proposed to motivate selfish nodes for cooperation in the packet forwarding process. Nodes having bad trust or reputation are detected and secluded from the network, eventually. However, due to the lack of proper identity management and use of non-persistent identities in ad hoc networks, malicious nodes can pose various threats to these methods. For example, a malicious node can discard the bad reputed identity and enter into the system with another identity afresh, called whitewashing. Similarly, a malicious node may create more than one identity, called Sybil attack, for self-promotion, defame other nodes, and broadcast fake recommendations in the network. These identity-based attacks disrupt the overall detection of the reputation systems. In this paper, we propose a reputation-based scheme that detects selfish nodes and deters identity attacks. We address the issue in such a way that, for normal selfish nodes, it will become no longer advantageous to carry out a whitewash. Sybil attackers are also discouraged (i.e., on a single battery, they may create fewer identities). We design and analyse our rationale via game theory and evaluate our proposed reputation system using NS-2 simulator. The results obtained from the simulation demonstrate that our proposed technique considerably diminishes the throughput and utility of selfish nodes with a single identity and selfish nodes with multiple identities when compared to the benchmark scheme.

A Study on Detecting Selfish Nodes in Wireless LAN using Tsallis-Entropy Analysis (뜨살리스-엔트로피 분석을 통한 무선 랜의 이기적인 노드 탐지 기법)

  • Ryu, Byoung-Hyun;Seok, Seung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • IEEE 802.11 MAC protocol standard, DCF(CSMA/CA), is originally designed to ensure the fair channel access between mobile nodes sharing the local wireless channel. It has been, however, revealed that some misbehavior nodes transmit more data than other nodes through artificial means in hot spot area spreaded rapidly. The misbehavior nodes may modify the internal process of their MAC protocol or interrupt the MAC procedure of normal nodes to achieve more data transmission. This problem has been referred to as a selfish node problem and almost literatures has proposed methods of analyzing the MAC procedures of all mobile nodes to detect the selfish nodes. However, these kinds of protocol analysis methods is not effective at detecting all kinds of selfish nodes enough. This paper address this problem of detecting selfish node using Tsallis-Entropy which is a kind of statistical method. Tsallis-Entropy is a criteria which can show how much is the density or deviation of a probability distribution. The proposed algorithm which operates at a AP node of wireless LAN extracts the probability distribution of data interval time for each node, then compares the one with a threshold value to detect the selfish nodes. To evaluate the performance of proposed algorithm, simulation experiments are performed in various wireless LAN environments (congestion level, how selfish node behaviors, threshold level) using ns2. The simulation results show that the proposed algorithm achieves higher successful detection rate.

Game-Theoretic Analysis of Selfish Secondary Users in Cognitive Radio Networks

  • Kahsay, Halefom;Jembre, Yalew Zelalem;Choi, Young-June
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.440-448
    • /
    • 2015
  • In this paper, we study the problem of selfish behavior of secondary users (SUs) based on cognitive radio (CR) with the presence of primary users (PUs). SUs are assumed to contend on a channel using the carrier sense multiple access with collision avoidance (CSMA/CA) and PUs do not consider transmission of SUs, where CSMA/CA protocols rely on the random deference of packets. SUs are vulnerable to selfish attacks by which selfish users could pick short random deference to obtain a larger share of the available bandwidth at the expense of other SUs. In this paper, game theory is used to study the systematic cheating of SUs in the presence of PUs in multichannel CR networks. We study two cases: A single cheater and multiple cheaters acting without any restraint. We identify the Pareto-optimal point of operation of a network with multiple cheaters and also derive the Nash equilibrium of the network. We use cooperative game theory to drive the Pareto optimality of selfish SUs without interfering with the activity of PUs. We show the influence of the activity of PUs in the equilibrium of the whole network.

Social Incentives for Cooperative Spectrum Sensing in Distributed Cognitive Radio Networks

  • Feng, Jingyu;Lu, Guangyue;Min, Xiangcen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.355-370
    • /
    • 2014
  • Cooperative spectrum sensing has been considered as a promising approach to improve the sensing performance in distributed cognitive radio networks. However, there may exist some selfish secondary users (SUs) who are unwilling to cooperate. The presence of selfish SUs could cause catastrophic damage to the performance of cooperative spectrum sensing. Following the social perspective, we propose a Social Tie-based Incentive Scheme (STIS) to deal with the selfish problem for cooperative spectrum sensing in distributed cognitive radio networks. This scheme inspires SUs to contribute sensing information for the SUs who have social tie but not others, and such willingness varies with the strength of social tie value. The evaluation of each SU's social tie derives from its contribution for others. Finally, simulation results validate the effectiveness of the proposed scheme.

Stability of Slotted Aloha with Selfish Users under Delay Constraint

  • Chin, Chang-Ho;Kim, Jeong-Geun;Lee, Deok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.542-559
    • /
    • 2011
  • Most game-theoretic works of Aloha have emphasized investigating Nash equilibria according to the system state represented by the number of network users and their decisions. In contrast, we focus on the possible change of nodes' utility state represented by delay constraint and decreasing utility over time. These foregone changes of nodes' state are more likely to instigate selfish behaviors in networking environments. For such environment, in this paper, we propose a repeated Bayesian slotted Aloha game model to analyze the selfish behavior of impatient users. We prove the existence of Nash equilibrium mathematically and empirically. The proposed model enables any type of transmission probability sequence to achieve Nash equilibrium without degrading its optimal throughput. Those Nash equilibria can be used as a solution concept to thwart the selfish behaviors of nodes and ensure the system stability.

IAR-GT: An Incentive Aware Routing based on Game Theory for Selfish Opportunistic Networks

  • Li, Li;Zhong, Xiaoxiong;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.152-171
    • /
    • 2019
  • In opportunistic networks, nodes may appear some selfishness while transmitting the message, however, most of the existing research works consider the individual selfishness or social selfishness respectively, and these two types of selfishness may coexist in opportunistic networks. In this paper, we propose an Incentive Aware Routing based on Game Theory for selfish OPPNETs, named IAR-GT, which uses Rubinstein-Stahl bargaining game model to incentivize selfish nodes cooperation in data forwarding. IAR-GT scheme not only considers the resources of nodes, but also uses a new method to calculate the social ties between them. Trace-driven simulations show that our incentive aware routing scheme achieves better performances than comparing schemes under two types of selfishness coexistence environments.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

Scheduling Selfish Agents on Machines with Speed Functions (속도 함수를 가지는 기계들에 이기적 에이전트 스케줄링)

  • Kim, Jae-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.417-420
    • /
    • 2008
  • We consider the problem of optimizing the performance of a system shared by selfish non-cooperative users. In this problem, small jobs which the users request should be scheduled on a set of shared machines with their speed functions, each of which dependson the amount of jobs allocated on a machine. The performance of the system is measured by the maximum of the completion times when the machines complete the jobs allocated on them. The selfish users can choose a machine on which their jobs are executed, and they choose the fastest machine. But it typically results in suboptimal system performance. The Price of Anarchy(PoA) was introduced as a measure of the performance degradation due to the user's selfish behavior. The PoA is the worst-case ratio of the cost of a Nash equilibrium to the optimal cost. In this paper, we estimate the PoA for the above scheduling problem.

Wallace Thurman's The Blacker the Berry: Loving Oneself Enough to Be Selfish

  • Lee, Yonghwa
    • American Studies
    • /
    • v.43 no.1
    • /
    • pp.99-114
    • /
    • 2020
  • This essay examines how Wallace Thurman envisions throug h Emma Lou a possibility of overcoming self-hatred and moving toward self-acceptance in his novel, The Blacker the Berry. Focusing on Emma Lou's departure from Alva and his deformed son, this essay contends that her "selfish" act is the first step toward self-acceptance. Describing his dark-skinned protagonist's pathetic attempts to belong to light-skinned people, Thurman mercilessly exposes and criticizes Emma Lou's psychological contradictions. Simultaneously, however, Thurman sympathizes with and shows some respect for her endeavors to make a difference in her life. Emma Lou's redemption from her self-hatred can come only when she realizes its detrimental effects on her life and learns to love herself enough to be selfish. By granting Emma Lou an opportunity to conduct a serious self-examination and resolve to sever ties with Alva, Thurman demonstrates a possibility of fighting against the color prejudice found both inside and outside oneself.