• Title/Summary/Keyword: Self-tuning controllers

Search Result 43, Processing Time 0.026 seconds

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

Comparison between Fuzzy and Adaptive Controls for Automatic Steering of Agricultural Tractors (농용트랙터의 자동조향을 위한 퍼지제어와 적응제어의 비교)

  • 노광모
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 1996
  • Automatic guidance of farm tractors would improve productivity by reducing operator fatigue and increasing machine performance. To control tractors within $\pm$5cm of the desired path, fuzzy and adaptive steering controllers were developed to evaluate their characteristics and performance. Two input variables were position and yaw errors, and a steering command was fed to tractor model as controller output. Trapezoidal membership functions were used in the fuzzy controller, and a minimum-variance adaptive controller was implemented into the 2-DOF discrete-time input-output model. For unit-step and composite paths, a dynamic tractor simulator was used to test the controllers developed. The results showed that both controllers could control the tractor within $\pm$5cm error from the defined path and the position error of tractor by fuzzy controller was the bigger of the two. Through simulations, the output of self-tuning adaptive controller was relatively smooth, but the fuzzy controller was very sensitive by the change of gain and the shape of membership functions. Contrarily, modeling procedure of the fuzzy controller was simple, but the adaptive controller had very complex procedure of design and showed that control performance was affected greatly by the order of its model.

  • PDF

A Systematic Approach for Designing a Self-Tuning Power System Stabilizer Based on Artificial Neural Network

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-286
    • /
    • 2005
  • The main objective of the research work presented in this article is to present a systematic approach for designing a multilayer feed-forward artificial neural network based self-tuning power system stabilizer (ST-ANNPSS). In order to suggest an approach for selecting the number of neurons in the hidden layer, the dynamic performance of the system with ST-ANNPSS is studied and hence compared with that of conventional PSS. Finally the effect of variation of loading condition and equivalent reactance, Xe is investigated on dynamic performance of the system with ST-ANNPSS. Investigations reveal that ANN with one hidden layer comprising nine neurons is adequate and sufficient for ST-ANNPSS. Studies show that the dynamic performance of STANNPSS is quite superior to that of conventional PSS for the loading condition different from the nominal. Also it is revealed that the performance of ST-ANNPSS is quite robust to a wide variation in loading condition.

  • PDF

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

퍼지 간접추론법에 의한 비례-적분-미분 제어기의 점진적 자기동조

  • 김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.182-186
    • /
    • 1992
  • A self tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The fuzzy technique is considered to obtain ease and simplicity of tuning process. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the followed tuning process can be made effectively. The design parameters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proped tuning method can produce an effective tuning for arbitaray design performances.

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Offset elimination in adaptive control (적응제어에서의 오프셋 영향 제거)

  • 최두환;김영철;양홍식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.236-241
    • /
    • 1988
  • This note considers the class of controllers with integral action which arise directly from appropriate system models. Via internal model principle approach, a corresponding class of self-tuning controller is shown to have both integral action in controller and offset removal in the tuning algorithm. The key idea is to constrain the estimator in each step in order to ensure that dc gain of feedforward and feedback polynomial of adaptive controller are always equal, thus allowing the loop integrator to work properly.

  • PDF

Look-up table based self organizing fuzzy control

  • Choi, Han-Soo;Jeong, Heon;Kim, Young-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.127-130
    • /
    • 1995
  • Fuzzy controllers have proven to be powerful in controlling dynamic processes where mathematical models are unknown or intractable and ill-defined. The way of improving the performance of a fuzzy controller is based on making up rules, constructing membership functions, selecting a defuzzification method and adjusting input-output scaling factors. But there are many difficulties in tuning those to optimize a fuzzy controller. So, in this paper, we propose the look-up table based self-orgenizing fuzzy controller (LSOFC) which optimizes look-up values resulting from the above fuzzy processes. We use the plus-minus tuning method(PMTM), scanning the value through the processes of addition and subtraction. Simulation results demonstrate that the performance of LSOFC is far better than that of a non-tuning fuzzy controller.

  • PDF

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Self -Tuning Scheme for Parameters of PID Controllers by Fuzzy Inference (퍼지추론에 의한 PID제어기의 파라미터 Tuning의 구성)

  • 이요섭;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.52-57
    • /
    • 2003
  • A PID parameter tuning method was presented by the fuzzy singleton inference, based on step response-shaping of plant and experience knowledge of expert. The parameter-tuning has tow levels. The higher level determines modified coefficients for the controller based on operator's tuning know-how for characteristics of plant which can not be modeled. The lower level determines specified coefficients based on characteristics of response by Ziegler-Nickel's bounded sensitivity method. The last level parameters tuning of a PID controller is adjusted which the modified and specified coefficients makes adjustment rule, and is adjusted the proper value to each parameters by fuzzy singleton inference. Moreover, proposed the tuning method can reflex exporter knowledge and operator's tuning know-how and fuzzy singleton inference is rapidly operated.

  • PDF