• 제목/요약/키워드: Self-tuning PID Control

검색결과 96건 처리시간 0.024초

다변수 자기동조 PID 제어기의 설계 (Design of multivariable self tuning PID controllers)

  • 조원철;전기준
    • 전자공학회논문지S
    • /
    • 제34S권7호
    • /
    • pp.66-77
    • /
    • 1997
  • This paper presents an automatic tuning method for parameters of a multivaiable self-tuning velocity-type PID controller which adapts to changes in the system parameters with time delays and noises. The velocity-type PID control structure is determined in the process of minimizing the variance of the auxiliarly output, and self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optiminzing the design parameters of the controller. The proposed PID type multivariable self-tuning method is simple andeffective compared with other esisting multivariable self-tuning methods. Computer simulation has shown that the proposed algorithm is beter than the trial-and-error method in the tracking performance.

  • PDF

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

온라인 자기동조 퍼지 PID 제어기 개발 (The development of an on-line self-tuning fuzzy PID controller)

  • 임형순;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.704-707
    • /
    • 1997
  • In this paper, we present a fuzzy logic based tuner for continuous on-line tuning of PID controllers. The essential idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a singler parameter .alpha., then to use an on line fuzzy logic to self-tune the parameter. The adaptive scaling makes the controller robust against large variations in parametric and dynamics uncertainties in the plant model. New self-tuning controller has the ability to decide when to use PI or PID control by extracting process dynamics from relay experiments. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with nonminimum phase processes.

  • PDF

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구;이공희;임정흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Design of a Neural Network Based Self-Tuning Fuzzy PID Controller)

  • 임정흠;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

공정 제어를 위한 적응 GP-PID의 구현과 동조 (Implementation and tuning of adaptive generalized predictive PID for process control)

  • 이창구;설오남;김성중
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.197-203
    • /
    • 1997
  • In this paper, we present a GP-PID(Generalized Predictive PID) controller which has the same structure as a generalized predictive control with steady-state weighting. The proposed controller can perform better than the conventional PID controller because it includes intrinsic delay-time compensator. The PID tuning parameters and delay-time compensator are calculated by equating the two degree of freedom PID to a linear form of GPC. The proposed controller is combined with a supervisor for safe start and self-tuning. GP-PID controller has been tested for various numerical models and an experimental stirred tank heater. As a result, it was observed that the proposed controller shows a satisfactory performance for variable delay as well as stochastic disturbance.

  • PDF

자기동조 PID제어기를 위한 퍼지전문가 시스템 (A fuzzy expert system for auto-tuning PID controllers)

  • 이기상;김현철;박태건;김일우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.398-403
    • /
    • 1993
  • A rule based fuzzy expert system to self-tune PID controllers is proposed in this paper. The proposed expert system contains two rule bases, where one is responsible for "Long term tuning" and the other for "Incremental tuning". The rule for "Long term tuning" are extracted from the Wills'map and the knowledge about the implicit relations between PID gains and important long term features of the output response such as overshoot, damping and rise time, etc., while 'Incremental tuning" rules are obtained from the relations between PID gains and short term features, error and change in error. In the PID control environment, the proposed expert system operates in two phases sequentially. In the first phase, the long term tuning is performed until long term features meet their desired values approximately. Then the incremental tuning tarts with PID gains provided by the long term tuning procedure. It is noticeable that the final PID gains obtained in the incremental tuning phase are only the temporal ones. Simulation results show that the proposed rule base for "Long term tuning" provides superior control performance to that of Litt and that further improvement of control performance is obtained by the "Incremental tuning'.ance is obtained by the "Incremental tuning'.ing'.

  • PDF

공압 NC축의 신경회로망 결합형 PID 제어 (Neural Network Based PID Control for Pneumatic NC Axes)

  • 박래서;조승호
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.105-111
    • /
    • 2006
  • This paper describes a Neural Network based PID control scheme for pneumatic NC axes. Pneumatic systems have inherent nonlinearities such as compressibility of air and nonlinear frictions present in cylinder. The conventional PID controller is limited in some applications where the affection of nonlinear factor is dominant. A self-excited oscillation method is applied to derive the dynamic design parameters of linear model. The gains of PID controller are determined using a self tuning scheme. The experiments of a trajectory tracking control using the proposed control scheme are performed and a significant reduction in tracking error is achieved by comparing with those of a PID control.

직류 서어보 전동기 제어를 위한 직접 극배치 PID 자기동조 제어기의 설계 (A Study on the Direct Pole Placement PID Self-Tuning Controller design for DC Servo Motor Control)

  • 이규영;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.327-331
    • /
    • 1989
  • This paper concerned about a study on the direct pole placement PID self-tuning controller design for Robot manipulator control system. The method of a direct pole placement self-tuning PID control for a DC motor of robot manipulator tracks a reference velocity in spite of the parameters uncertainties in nonminimum phase system. In this scheme, the parameters of controller are estimated by the recursive least square(RLS) identification algorithm, the pole placement method and diophantine equation. A series of simulation in which minimum phase system and nonminimum phase system are subjected to a pattern of system parameter changes is presented to show some of the features of the proposed control algorithm. The proposed control algorithm which shown are effective for the practical application, and experiments of DC motor speed control for Robot manipulator by a microcomputer IRH-PC/AT are performed and the results are well suited.

  • PDF

신경회로망 자기종조 PID 제어기를 이용한 전력계통의 부하주파수제어에 관한 연구 (A Study on the Load Frequency control of Power System Using Neural Network Self Tuning PID Controller)

  • 정형환;김상효;주석민;김경훈
    • 한국지능시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.29-38
    • /
    • 1998
  • 본 논문에서는 부하외란이 발생할 경우 2지역 전력계통의 부하주파수 제어 즉, 각 지역내의 주파수 및 연계선 조류편차가 허용치 내로 신속히 수렴하도록 하기 위하여 신경회로망 자기동조 PID 제어기를 제안하였다. 시뮬레이션에 사용된 신경회로망은 입력층에 2개, 중간층에 10개, 출력층에 3개의 뉴런으로 구성하였다. 2개의 입력층 뉴런은 시스템의 오차와 오차 변화율이 입력되게 하였고 출력층은 PID 제어기의 파라미터에 해당하는 3개의 뉴런으로 구성하였다.시뮬레이션 결과 본 논문에서 제안한 신경회로망 자기동조 PID 제어기는 종래의 제어기법(Optimal, PID)보다 동특성 응답과 제어 성능이 우수한 제어기임을 알 수 있었다.

  • PDF