• Title/Summary/Keyword: Self-tuning Fuzzy Controller

Search Result 121, Processing Time 0.026 seconds

Fuzzy Hybrid Control of Rhino XR-2 Robot (Rhino XR-2 로보트의 퍼지 혼성 제어)

  • Byun, Dae-Yeal;Sung, Hong-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.299-303
    • /
    • 1993
  • There can be two methods in control systems: one is to use a linear controller, the other is to use a nonlinear controller. The PID controller and the fuzzy controller can be said to belong the linear and the nonlinear controller respectively. In this paper, a new hybrid controller which is consist of the linear PID controller of which the gain is tuned and the nonlinear self tuning fuzzy controller is proposed. In the PID controller, an algorithm which parameterizes the proportional, the intergral, and the derivative gain as a single parameter is used to improve the performance of the PID controller. In the self tuning fuzzy controller, an algorithm which changes the shape of the triangle membership function and changes the scaling factor which is multiplied to the error and the error change. The evaluation of the performance of the suggested algorithm is carried on by the simulation for the Rhino XH-2 robot manipulator with 5 links revolute joints.

  • PDF

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.

A study of Self-Tuning PI Speed Controller Based on Fuzzy for Permanent Magnet Linear Synchronous Motor (선형 영구자석형 동기 전동기의 Fuzzy 기반 Self-Tuning PI 속도 제어기에 관한 연구)

  • Lee Chin-Ha;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.602-611
    • /
    • 2004
  • Servo system has commonly adapted PI controller with fixed gains, because of its simplicity and determinative relationship among the parameters. The fixed gains PI system may be applied well to some operation conditions, but not non-linearities, complex and time variant operation conditions. For solving these problems, another conventional method, 'variable gun schedule according to speed', is published. The value of gain is determined according to the absolute value of the mover real speed. In this paper, FSTPIC(Fuzzy Self-Tuning PI Controller) is proposed based on various experiences to rapidly reduce speed error and to secure a good speed response characteristics. The effectiveness of proposed algorithms is demonstrated by comparing to two conventional gain systems via 4-quadrant operation.

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

Implementation of Fuzzy Controller of DC Motor Using Evolutionary Computation (진화 연산을 이용한 DC 모터 퍼지 제어기 구현)

  • Hwang, G.H.;Kim, H.S.;Mun, K.J.;Lee, H.S.;Park, J.H.;Hwang, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.189-191
    • /
    • 1995
  • This paper proposes a design of self-tuning fuzzy controller based on evolutionary computation. Optimal membership functions are found by using evolutionary computation. Genetic algorithms and evolution strategy are used for tuning of fuzzy membership function. An arbitrarily speed trajectory is selected to show the performance of the proposed methods. Experiment results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on evolutionary computation.

  • PDF

Self Tuning PI Controller of Induction Motor using Fuzzy Control (퍼지제어를 이용한 유도전동기의 자기동조 PI제어기)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.173-175
    • /
    • 2004
  • This paper presents a novel design of a self tuning PI controller of induction motor using fuzzy control. In this approach, the fuzzy tuning of a PI controller gains is achieved through fuzzy rules deduced from many robustness simulation tests applied to several induction motors, for a variety of operating conditions such as response to speed command from standstill, step load torque application and speed variations, with nominal parameters and an changed rotor resistance, self inductance and inertia. Simulation results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor (퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어)

  • Hwang, G.H.;Kim, H.S.;Park, J.H.;Hwang, C.S.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

Levitation Control of BLSRM using Adaptive Fuzzy PID Controller (퍼지제어기 기반의 새로운 BLSRM의 축방향지지력 제어)

  • He, Yingjie;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.519-520
    • /
    • 2016
  • BLSRM is a nonlinear, strong coupling and multi-variable system. The conventional control method is vulnerable to uncertain factors such as the load disturbance and satellite parameters change. It is difficult to obtain satisfactory control effect. Basing on a 8/10 BLSRM, whose suspending force control is separated with the torque control, this paper presents adaptive fuzzy PID controller for levitation control, which apply the fuzzy logic control to the conventional PID controller for parameters self-tuning. Both fuzzy and parameters of PID controller are self-tuning on-line, which improve the performance of controller. Finally, simulation and experimental results show the performance of the proposed method.

  • PDF

On-line self-tuning PID power controller using fuzzy logic for CDMA cellular systems (퍼지 논리를 이용한 온라인 자기동조기능을 갖는 CDMA 셀룰러 시스템용 PID 전력제어기)

  • 김상민;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.211-214
    • /
    • 1997
  • This paper applies fuzzy self-tuning PID controller in DS/CDMA cellular system. Power control is essential in DS/CDMA to compensate for the differing received powers due to both the slowly varying long-term and fast varying short-term fading processes and co-channel interference. The controller proposed is adaptable for the variations of the system dynamics and especially for the variable time delay which exists in mobile radio systems. Accordingly the results is the smaller power control error, that is, the smaller average transmitting power of mobile compared with the conventional control schemes. Because interferences to the other mobiles are reduced, the capacity of CDMA can be increased.

  • PDF