• 제목/요약/키워드: Self-shielding effect

검색결과 34건 처리시간 0.025초

Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가 (Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method)

  • 차균호;박영우
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.

RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

  • Chiba, Go;Tsuji, Masashi;Narabayashi, Tadashi
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.281-290
    • /
    • 2014
  • In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

철/크롬 오버레이합금의 파괴인성에 미치는 크롬탄화물 양의 영향 (Effect of Volume Fraction of Chromium Carbide on Fracture Toughness of the Iron/Chromium Hardfacing Alloy)

    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.64-72
    • /
    • 1998
  • This study aims a investigating the effect of volume fraction of chromium carbide phase(VFC) of hardfaced iron/chromium alloys on fracture toughness. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. In order to examine VFC effect, different VFC (0.28∼0.62) were employed by changing the Cr and C content, while the ratio of Cr/C was fixed in the range of 5.7∼6.6. Fracture toughness was constant as increasing VFC because fracture surface was developed in the eutectic phase which was growing parallel with introduced sharp notch in the hypoeutectic alloys, but fracture toughness did not decreased in spite of increasing volume fraction of coarse primary chromium carbide phase which was easily craced at the low stress because the growth direction of chromium carbide phase were more irregular as increasing VFC in the hypereutectic alloys.

  • PDF

목표달성가능성에 영향을 미치는 개인의 특성과 목표달성기제에 관한 연구 (The Relationship of Individual Trait Factors and Goal Mechanisms with Goal Attainability)

  • 박종철;최지은
    • 유통과학연구
    • /
    • 제12권11호
    • /
    • pp.45-53
    • /
    • 2014
  • Purpose - Goal setting is effective in any domain in which an individual or group has some control over the outcomes. It applies not only to work tasks but also to sports and health, and in various other settings. Its success depends on considering the mediators and moderators determining its efficacy and applicability. This study investigates the individual factors influencing academic goal attainability. Unlike previous studies, we focused on the effect of the relationships between individual traits (passion, tenacity, self-control) and specific motivation (vision, self-efficacy, implementation intentions) with academic goal attainability, rather than the effects of the relationship between commitment and the goal shielding mechanism with goal attainability. Research design, data, and methodology - Data collected through questionnaires were analyzed by the SPSS program. A total of 293 school students, who participated in the TOEIC program, participated in the survey. Slightly more than half were female (male: n=145 vs. female: n=148). We verified nine hypotheses through various statistical methods (reliability analysis, exploratory factor analysis, confirmatory factor analysis, structural equation model for the hypothesis test, bootstrapping test for the mediation test). Results - Data was analyzed in three phases. The first phase involved measurement analysis (i.e., item purification and factor structure confirmation), involving the scales of the three variables of individual traits, three mechanism variables, and goal attainability. The second phase involved estimating the proposed structural relationships among the key constructs (see Figure 1), using the results to test H1 to H9. The final phase involved examining the mediating effects of the three variables (vision, implementation intention, and self-efficacy). The research model shows that the independent variable passion has a significant result with both the mediators-vision and self-efficacy. Further, vision and self-efficacy significantly affect goal attainability. The second variable, self-control, shows a significant effect when mediated by implementation intentions, but the direct relationship between implementation intension and goal attainability shows an insignificant result. However, when further mediated by self-efficacy, it showed a significant effect between self-efficacy and goal attainability. Similarly, the third variable, tenacity, shows an insignificant result when mediated by vision. In contrast, the mediator self-efficacy shows a positive effect between tenacity and goal attainability. Conclusions - This study shows how these individual traits, when mediated with the appropriate motivational factors, resulted significantly in the attainability of academic goals. We may identify several theoretical and practical contributions. Theoretically, we developed a step further in the research into consumer goals and related studies. Future research could examine the effects of different learning goal types and their combinations with performance goals (e.g., learning goals first, then performance goals), different types of goal framing (approach success vs. avoid failure), the relation between goals and cognition (which, by implication, entails all of cognitive psychology), goal hierarchies, and macro goal studies with organizations of different sizes. More studies on the relationship between conscious and subconscious goals would also be valuable.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

A feasibility study on photo-production of 99mTc with the nuclear resonance fluorescence

  • Ju, Kwangho;Lee, Jiyoung;ur Rehman, Haseeb;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.176-189
    • /
    • 2019
  • This paper presents a feasibility study for producing the medical isotope $^{99m}Tc$ using the hazardous and currently wasted radioisotope $^{99}Tc$. This can be achieved with the nuclear resonance fluorescence (NRF) phenomenon, which has recently been made applicable due to high-intensity laser Compton scattering (LCS) photons. In this work, 21 NRF energy states of $^{99}Tc$ have been identified as potential contributors to the photo-production of $^{99m}Tc$ and their NRF cross-sections are evaluated by using the single particle estimate model and the ENSDF data library. The evaluated cross sections are scaled using known measurement data for improved accuracy. The maximum LCS photon energy is adjusted in a way to cover all the significant excited states that may contribute to $^{99m}Tc$ generation. An energy recovery LINAC system is considered as the LCS photon source and the LCS gamma spectrum is optimized by adjusting the electron energy to maximize $^{99m}Tc$ photo-production. The NRF reaction rate for $^{99m}Tc$ is first optimized without considering the photon attenuations such as photo-atomic interactions and self-shielding due to the NRF resonance itself. The change in energy spectrum and intensity due to the photo-atomic reactions has been quantified using the MCNP6 code and then the NRF self-shielding effect was considered to obtain the spectrums that include all the attenuation factors. Simulations show that when a $^{99}Tc$ target is irradiated at an intensity of the order $10^{17}{\gamma}/s$ for 30 h, 2.01 Ci of $^{99m}Tc$ can be produced.

고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 기지상의 영향 (Effect of Matrix Phase on the Abrasive Wear Behavior of the High Cr White Iron Hardfacing Weld Deposites)

  • 백응률
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.114-124
    • /
    • 1998
  • The effect of matrix phase (austenite, pearlite, martensite) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iorn hardfacing weld deposites has been investigated. In order to examine matrix phase, a series of alloys with different matrix phase by changing the ratio of Cr/C system by heat treatment were employed. The alloys were deposited twice on a mild steel plate using self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test(RWAT). Even though formation of pearlite phase in the matrix showed higher hardness than that of austenite, there was no observable difference in wear resistance between the pearlite and austenite phase for the same amount of chromium-carbide in the matrix. On the other hand, the formation of martensitic phase,, from heat treated austenitic alloys (high content of Cr), enhanced wear resistance due to its fine secondary precipitates.

  • PDF

고크롬 철계 오버레이용접층의 긁힘마모거동에 미치는 크롬탄화물 양의 영향 (Effect of Volume Fraction of Cr Carbide Phase on the Abrasive Wear Behavior of the High Cr White Iron Harcfacing Weld Deposits)

  • 백응률
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.125-133
    • /
    • 1998
  • The effect of volume fraction of Cr carbide phase (Cr CVF) on the low stress abrasion resistance in the chromium-carbide-type high Cr white iron hardfacing weld deposits has been investigated. In order to examine Cr CVF, a series of alloys with varying Cr CVF by changing chromium and carbon contents and the ratio of Cr/C were employed. The alloys were deposited once or twice on a mild steel plate using the self-shielding flux cored arc welding process. The low stress abrasion resistance of the alloys against sands was measured by the Dry Sand/Rubber Wheel Abrasion Test (RWAT). It was shown that hardness and abrasion resistance increased with increasing Cr CVF within the whole test range (Cr CVF : 0.23-0.64). Both primary Cr carbide and eutectic Cr carbide were particularly effective in resisting wear due to their high hardness.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1996년도 제7회 학술강연회논문집
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

Improvement of Oxidation Resistance by Coating on C/BN Composites

  • Kim, Dong-Pyo;Park, Hee-Dong;Lee, Jae-Do
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.155-159
    • /
    • 1995
  • Borosilicate, $B_2O_3$ and BN derived from liquid precursors have been tested as shielding materials for the long period of oxidation resistance of C/BN composites at $650^{\circ}C$. Borosilicate coating displayed excellent oxidation resistance and low moisture absorbance, while $B_2O_3$ and BN were less effective in elevating the oxidation resistance. The enhancement of the oxidation resistance was explained as self-healing effect by viscous flow of the borosilicate glass over Tg, resulting in the reduction of the exposed carbon fibers in a BN matrix.

  • PDF