• Title/Summary/Keyword: Self-reaction

Search Result 739, Processing Time 0.033 seconds

Investigation of the electrode reaction of cytochrome c and pyrroliquinoline quinone at self-assembled monolayers of amino acid

  • Kim Imsook;Kwak Juhyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.27-30
    • /
    • 1999
  • Self-Assembled monolayers of carboxyl-terminated alkanethiols, which is negatively charged in pH 7.0, were usually used to facilitate the electron transfer between the positively charged protein and the electrode. In case of L-cysteine, as it has both positive and negative group, it can be a candidate for a new modifier to facilitate positively charged protein or negatively charged protein. Our investigation of L-cysteine shows that the electron transfer occurs successfully to both cytochrome c (cyt. c) and pyrroloquinoline quinone (PQQ). By using 1-ethyl-3-(3-dime-thlyaminopropyl) carbodiimide (EDC), we made a covalent bond between cyt. c and monolayer. Then PQQ was electrostatically adsorbed to the same monolayer. Cyclic voltammograms show that both molecules do not interfere each other and electron transfer is appreciable.

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

Charge Transfer Property of Self-Assembled Viologen Monolayer by Resonant Frequency Shift of QCM (수정진동자의 공진주파수 변화에 의한 Viologen 자기조립박막의 전하이동 특성)

  • Lee, Ji-Yoon;Roh, Sung-Mi;Park, Je-Won;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2020-2021
    • /
    • 2007
  • Viologen derivative has been widely investigated because of their well-electrochemical behavior including the electron acceptor for the electric charge delivery mediation of the devices. The viologen exist in three main oxidation states, namely, $V^{2+}{\rightleftarrows}V^{{\cdot}+}{\rightleftarrows}V^0$. These redox reactions are highly reversible and can be cycled many times without significant side reaction. In this paper, we determined the time dependence to resonant frequency shift of QCM during self-assembly process and the electrochemical behavior of the self-assembled viologen monolayers by electrochemical QCM method. The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redox reactions.

  • PDF

Study on the Reaction Characteristics of Self-reducing $Nb_2O_5$ Briquettes (자기 환원성 $Nb_2O_5$ 브리켓의 반응특성 연구)

  • Kim M. S.;You B. D.;Wi C. H.;Yun D. J.;Choi S. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.333-336
    • /
    • 2005
  • The reduction behavior of $Nb_2O_5$ in aluminum containing self-reducing briquettes(SRNB) was investigated. The time required for slag/metal equilibrium was estimated as about 20 minutes from the addition of SRNB on to the surface of molten steel. The maximum yield of Nb was expected with the slag composition of $60\%CaO-40\%Al_2O_3$. When $CaCO_3$ was used as a flux, the oxidation loss of Al by $CO_2$ should be compensated, and the chemical equivalent ratio of Al to $Nb_2O_5$ of about 1.43 was required to maximize the yield of Nb.

  • PDF

Self-Assembled Peptide Structures for Efficient Water Oxidation

  • Lee, Jae Hun;Lee, Jung Ho;Park, Yong Sun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.280-280
    • /
    • 2013
  • In green plants, energy generation is accomplished through light-harvesting photosystem, which utilize abundant visible light and multi-stepwise redox reaction to oxidize water and reduce NADP+, transferring electrons efficiently with active cofactors1. Inspired by natural photosynthesis, artificial solar water-splitting devices are being designed variously. However, the several approaches involving immobilization2, conjugation3, and surface modification4 still have limitations. We have made artificial photosynthesis templates by self-assembling tyrosine-based peptide to mimick photosystem II. Porphyrin sensitizer absorbing blue light strongly was conjugated with the templates and they were hybridized with cobalt oxide through the reduction of cobalt ions in an aqueous solution. The formation of hybrid templates was characterized using TEM, and their water oxidation performance was measured by fluorescence oxygen probe. Our results suggest that the bio-templated assembly of functional compounds has a great potential for artificial photosynthesis.

  • PDF

Self-Assembled Monolayers of Alkanethiols on Clean Copper Surfaces

  • Sung, Myung M.;Kim, Yeon Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.748-752
    • /
    • 2001
  • Alkanethiols (CH3(CH2)n-1SH) based self-assembled monolayers (SAMs) on the clean copper surfaces have been examined for n = 4, 8, and 16. Using X-ray photoelectron spectroscopy (XPS) and contact angle analysis, it is found that alkanethiolate monolayers similar to those on gold are formed on clean copper surfaces. The monolayers are stable in air up to about 140 $^{\circ}C.$ Above 160 $^{\circ}C$ the monolayers begin to desorb through the oxidation reaction of the thiolate to sulfonate, with the alkyl chains remaining intact. Following this desorption step, the copper surface has begun to oxidize to CuO at about 180 $^{\circ}C$.

Catechol-Chitosan Hydrogel: Scale-up Synthesis and Self-Healing Properties (카테콜-키토산 하이드로겔의 대용량 합성과 자가 치유 특성 분석)

  • Choi, Hoe Young;Ko, Haye Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.251-252
    • /
    • 2022
  • Chemical crosslinking is the most widely used method for hydrogel preparations. We prepared a hydrogel using chitosan catechol/polyvinyl alcohol and sodium tetraborate decahydrate (Na2B4O7·10H2O). The formation of hydrogels often presents inconsistent results and issues according to the reaction scale. Therefore, we measured and analyzed the self-healing property and viscoelasticity of hydrogels attributed to scale-up synthesis using a rheometer.

  • PDF

Fabrication of Organic-Inorganic Superlattice Films Toward Potential Use For Gas Diffusion Barrier

  • Yun, Gwan-Hyeok;Muduli, Subas Kumar;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.394-394
    • /
    • 2012
  • We fabricated organic-inorganic superlattice films using molecular layer deposition (MLD) and atomic layer deposition (ALD). The MLD is a gas phase process in the vacuum like to atomic layer deposition (ALD) and also relies on a self-terminating surface reaction of organic precursor which results in the formation of a monolayer in each sequence. In the MLD process, 'Alucone' is very famous organic thin film fabricated using MLD. Alucone layers were grown by repeated sequential surface reactions of trimethylaluminum and ethylene glycol at substrate temperature of $80^{\circ}C$. In addition, we developed UV-assisted $Al_2O_3$ with gas diffusion barrier property better than typical $Al_2O_3$. The UV light was very effective to obtain defect-free, high quality $Al_2O_3$ thin film which is determined by water vapor transmission rate (WVTR). Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of each organic, inorganic film. Composition of the organic films was confirmed by infrared (IR) spectroscopy. Ultra-violet (UV) spectroscopy was employed to measure transparency of the organic-inorganic superlattice films. WVTR is calculated by Ca test. Organic-inorganic superlattice films using UV-assisted $Al_2O_3$ and alucone have possible use in gas diffusion barrier for OLED.

  • PDF

A Multisegmented Polystyrene with pH-Cleavable Linkages

  • Kang, Tae-Hyeon;Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2694-2698
    • /
    • 2014
  • A multisegmented polystyrene (PS) with pH-cleavable ester and carbamate linkages was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). ATRP was employed to synthesize polystyrene from hydroxyl-terminated initiator using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) as the catalyst. The reaction of the resulting PS with sodium azide yielded the azido-terminated polymer. The hydroxyl group in the other end of the polymer was reacted with 4-nitrophenyl chloroformate (NPC), followed by reaction with propargylamine to produce an alkyne end group with a carbamate linkage. The PS with an alkyne group in one end and an azide group in the other end was then self-coupled in the presence of CuBr/2,2'-bipyridyl (bpy) in DMF to yield a desired multisegmented PS. Molecular weight and molecular weight distribution of the self-coupled polymer increased with time, as in the typical step-growth-type polymerization processes. Finally, we demonstrated that the ester and carbamate linkages of the multisegmented PS were hydrolyzed in the presence of HCl to yield individual PS chains.

Synthesis of Titanium Silicides by Mechanical Alloying (기계적합금화에 의한 Ti Silicide 화합물의 합성)

  • 변창섭;이상호;김동관;이진형
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.250-257
    • /
    • 1998
  • The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.

  • PDF