• 제목/요약/키워드: Self-organizing Neural Networks

검색결과 129건 처리시간 0.027초

HVS와 신경회로망을 이용한 디지털 워터마킹 (Digital Watermarking using HVS and Neural Network)

  • 이영희;이문희;차의영
    • 컴퓨터교육학회논문지
    • /
    • 제9권2호
    • /
    • pp.101-109
    • /
    • 2006
  • 본 논문에서는 DCT 도메인에서 영상의 블록에 대한 분류에 따라 다른 블록들에 삽입될 워터마크의 강도를 적용적으로 조절하여 워터마크를 삽입하기 위해 인간 시각 시스템(HVS)과 선경회로망 중 SOM(Self-Organizing Map)을 이용한 적용적 디지털 이미지 워터마킹을 제안한다. 인간 시각 시스템을 기반으로 하여 블록의 특정벡터를 찾아낸다. 블록의 특정벡터를 입력으로 SOM에 의해 블록들은 4등급으로 분류된다. 이들 중 3개의 등급에 속하는 블록을 선택하여 DCT 계수들 중 DC성분을 제외한 저주파 성분을 가지는 6개의 계수들을 선택하여 워터마크를 삽입한다. 실험을 통해 새로 제안된 알고리즘은 좋은 화질을 얻을 수 얻을 수 있었고 JPEG 압축, 영상처리, 기하학적 변환과 잡음과 같은 공격에 아주 강인하였다.

  • PDF

FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘 (The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN)

  • 박병준;오성권;김현기
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF

호소수의 강우-저류량 및 TOC변동 특성분석을 위한 자기조직화 방법의 적용 (Application of Self-Organizing Map for the Characteristics Analysis of Rainfall-Storage and TOC Variation in a Lake)

  • 김용구;진영훈;정우철;박성천
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.611-617
    • /
    • 2008
  • It is necessary to analysis the data characteristics of discharge and water quality for efficient water resources management, aggressive alternatives to inundation by flood and various water pollution accidents, the basic information to manage water quality in lakes and to make environmental policy. Therefore, the present study applied Self-Organizing Map (SOM) showing excellent performance in classifying patterns with weights estimated by self-organization. The result revealed five patterns and TOC versus rainfall-storage data according to the respective patterns were depicted in two-dimensional plots. The visualization presented better understanding of data distribution pattern. The result in the present study might be expected to contribute to the modeling procedure for data prediction in the future.

Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어 (Robust Control of Industrial Robot Based on Back Propagation Algorithm)

  • 윤주식;이희섭;윤대식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현 (A neural network based real-time robot tracking controller using position sensitive detectors)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어 (Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm)

  • 정동연;한성현
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

반도체 제조공정에서의 이상수율 검출 방법론 (A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process)

  • 이장희
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF

Application of Soft Computing Model for Hydrologic Forecasting

  • Kim, Sung-Won;Park, Ki-Bum
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.336-339
    • /
    • 2012
  • Accurate forecasting of pan evaporation (PE) is very important for monitoring, survey, and management of water resources. The purpose of this study is to develop and apply Kohonen self-organizing feature maps neural networks model (KSOFM-NNM) to forecast the daily PE for the dry climate region in south western Iran. KSOFM-NNM for Ahwaz station was used to forecast daily PE on the basis of temperature-based, radiation-based, and sunshine duration-based input combinations. The measurements at Ahwaz station in south western Iran, for the period of January 2002 - December 2008, were used for training, cross-validation and testing data of KSOFM-NNM. The results obtained by TEM 1 produced the best results among other combinations for Ahwaz station. Based on the comparisons, it was found that KSOFM-NNM can be employed successfully for forecasting the daily PE from the limited climatic data in south western Iran.

  • PDF

인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구 (A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network)

  • 김원일;이윤경;왕덕현;강재관;김병창;이관철;정인룡
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계 (Design of AMI Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF