통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.
The conventional Boolean retrieval systems based on vector spae model can provide the results of retrieval fast, they can't reflect exactly user's retrieval purpose including semantic information. Consequently, the results of retrieval process are very different from those users expected. This fact forces users to waste much time for finding expected documents among retrieved documents. In his paper, we designed a bayesian SOM(Self-Organizing feature Maps) in combination with bayesian statistical method and Kohonen network as a kind of unsupervised learning, then perform classifying documents depending on the semantic similarity to user query in real time. If it is difficult to observe statistical characteristics as there are less than 30 documents for clustering, the number of documents must be increased to at least 50. Also, to give high rank to the documents which is most similar to user query semantically among generalized classifications for generalized clusters, we find the similarity by means of Kohonen centroid of each document classification and adjust the secondary rank depending on the similarity.
집중호우에 의한 도시 유역의 침수 피해가 도시화에 따라 증가하는 추세이며, 이에 따라 정확하면서도 신속한 홍수예보 및 침수 예상도 표출이 필요하다. 특정 강우량에 따른 미지의 침수 범위를 예상하는 것은 도시 유역의 홍수에 대한 사전 대비에 매우 중요한 사안이며, 이를 위해 현재 홍수 예보와 관련된 정부기관에서 침수 피해 예상도를 주민들에게 제공하고자 하고 있다. 하지만, 특정 강우에 따른 정확한 침수 범위를 정량화하여 표출하는데 부족함이 있으며, 강우량과 지속시간에 따른 홍수의 크기에 대한 분석을 실시하고 수리학적 연계를 통한 준 실시간 침수범위 표출 방안을 고찰해야할 시기이다. 제시된 물리적 해석기반 자료를 이용하여 강우량-지속시간-침수량 관계곡선(Rainfall-Duration-Flooding quantity relationship curve, RDF)을 제시하고, 자율학습을 수행하는 자기조직화 특징 지도와 연계하여 미지의 침수 지도를 예측하였다. 예측한 침수 지도와 2차원 침수모형을 통한 결과를 비교하여, 제시된 방법론의 타당성을 검토하였다. 연구 결과를 통하여 중규모의 강우량 또는 빈도의 사상에 따른 미지의 침수범위를 제시하는데 용이할 것으로 판단된다. 더욱이 다양한 강우-월류량-홍수 양상을 내포하는 RDF 관계 곡선과 최적 침수예상도 데이터베이스를 구축함으로서 추후에 홍수예보의 기초자료로서 사용될 것이다.
본 논문에서는 맛 인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 맛(쓴맛, 단맛, 신맛, 짠맛)학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 맛 활성화 신호의 세기가 사용되었고, 맛 패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하였고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 패턴벡터는 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 하였다. 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제23권1호
/
pp.39-51
/
2012
군집분석은 마이크로어레이 발현자료에서 유전자 혹은 표본들의 유사한 특성을 갖는 연관구조를 조사하는데 중요한 도구이다. 본 논문에서는 마이크로어레이 자료에서 계층적 군집방법, K-평균법, PAM (partitioning around medoids), SOM (self-organizing maps) 그리고 모형기반 군집방법 들의 성능을 3가지 군집 타당성 측도인 내적 측도, 안정적 측도 그리고 생물학적 측도를 가지고 비교분석하고자 한다. 모의실험을 통해 생성된 자료와 실제 SRBCT (small round blue cell tumor) 자료를 가지고 여러 가지 군집방법들의 성능을 비교하였으며 그 결과 모의실험 자료에서는 거의 모든 방법들이 3가지 군집측도에서 원래 자료와 일치하는 좋은 군집 결과를 나타내었고 SRBCT 자료에서는 모의실험 자료처럼 명확한 군집화 결과를 보여주지는 않으나 내적측도의 실루엣 너비 (Silhouette width) 관점에서는 PAM 방법, SOM, 모형기반 군집방법 그리고 생물학적 측도에서는 PAM 방법과 모형기반 군집방법이 모의실험 결과와 비슷한 결과를 얻었고 안정적 측도에서 모형기반 군집방법이 다른 방법들보다 좋은 군집결과를 보여주었다.
Ministry of Environment has been operating water quality monitoring network in order to obtain the basic data for the water environment policies and comprehensively understand the water quality status of public water bodies such as rivers and lakes. The observed water quality data is very important to analyze by applying statistical methods because there are seasonal fluctuations. Typically, monthly water quality data has to analyze that the transition comprise a periodicity since the change has the periodicity according to the change of seasons. In this study, trends, SOM and RDA analysis were performed at the Mulgeum station using water quality data for temperature, BOD, COD, pH, SS, T-N, T-P, Chl-a and Colon-bacterium observed from 1989 to 2013 in the Nakdong River. As a result of trends, SOM and RDA, the Mulgeum station was found that the water quality is improved, but caution is required in order to ensure safe water supply because concentrations in water quality were higher in the early spring(1~3 month) the most.
Kim, Jeong-Ah;Lee, Eun-Ju;Chung, In Hye;Kim, Hyung-Lae
Genomics & Informatics
/
제2권2호
/
pp.75-80
/
2004
In a variety of animal species, the perinatal exposure of experimental animals to the 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) leads to the immune dysfunction, which is more severe and persistent than that caused by adult exposure. We report here the changes of gene expression and the identification of the marker-genes representing the dioxin exposure. The expressions of the transcripts were analyzed using the 11 K oligonucleotidemicroarray from the bone marrow cells of male C57BL/6J mice after an intraperitoneal injection of $1{\mu}g$ TCDD/kg body weight at various time intervals: gestational 6.5 day(G6.5), 13.5 day(G13.5), 18.5 day(G18.5), and postnatal 3 (P3W)and 6 week (P6W). The type of self-organizing maps(SOM) representing the specific exposure dioxin could be identified as follows; G6.5D(C14), G13.5D(C0, C5, C10, C18), G18.5D(7): P3W(C2, C21), and P6W(C4, C15, C20). The candidate marker-genes were restricted to the transcripts, which could be consistently expressed greater than $\pm$2-fold in three experiments. The resulting candidates were 85 genes, the characteristics of that were involved in cell physiology and cell functions such as cell proliferation and immune function. We identified the biomarker-genes for dioxin exposure: smc -like 2 from SOM C14 for the dioxin exposure at G6.5D, focal adhesion kinase and 6 other genes from C0, and protein tyrosine phosphatase 4a2 and 3 other genes from C5 for G13.5D, platelet factor 4 from C7 for G18.5D, fos from C2 for P3W.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.