• Title/Summary/Keyword: Self-optimization

Search Result 356, Processing Time 0.028 seconds

OPAMP Design Using Optimized Self-Cascode Structures

  • Kim, Hyeong-Soon;Baek, Ki-Ju;Lee, Dae-Hwan;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.149-154
    • /
    • 2014
  • A new CMOS analog design methodology using an independently optimized self-cascode (SC) is proposed. This idea is based on the concept of the dual-workfunction-gate MOSFETs, which are equivalent to SC structures. The channel length of the source-side MOSFET is optimized, to give higher transconductance ($g_m$) and output resistance ($r_{out}$). The highest $g_m$ and $r_{out}$ of the SC structures are obtained by independently optimizing the channel length ratio of the SC MOSFETs, which is a critical design parameter. An operational amplifier (OPAMP) with the proposed design methodology using a standard digital $0.18-{\mu}m$ CMOS technology was designed and fabricated, to provide better performance. Independently $g_m$ and $r_{out}$ optimized SC MOSFETs were used in the differential input and output stages, respectively. The measured DC gain of the fabricated OPAMP with the proposed design methodology was approximately 18 dB higher, than that of the conventional OPAMP.

On the QoS Behavior of Self-Similar Traffic in a Converged ONU-BS Under Custom Queueing

  • Obele, Brownson Obaridoa;Iftikhar, Mohsin;Kang, Min-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.286-297
    • /
    • 2011
  • A novel converged optical network unit (ONU)-base station (BS) architecture has been contemplated for next-generation optical-wireless networks. It has been demonstrated through high quality studies that data traffic carried by both wired and wireless networks exhibit self-similar and long range dependent characteristics; attributes that classical teletraffic theory based on simplistic Poisson models fail to capture. Therefore, in order to apprehend the proposed converged architecture and to reinforce the provisioning of tightly bound quality of service (QoS) parameters to end-users, we substantiate the analysis of the QoS behavior of the ONU-BS under self-similar and long range dependent traffic conditions using custom queuing which is a common queuing discipline. This paper extends our previous work on priority queuing and brings novelty in terms of presenting performance analysis of the converged ONU-BS under realistic traffic load conditions. Further, the presented analysis can be used as a network planning and optimization tool to select the most robust and appropriate queuing discipline for the ONU-BS relevant to the QoS requirements of different applications.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

Design Study of LAR Tokamak Reactor with a Self-consistent System Analysis Code

  • Hong, B.G.;Lee, D.W.;Kim, S.K.;Kim, D.H.;Lee, Y.O.;Hwang, Y.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.314-314
    • /
    • 2010
  • The design of the blanket and shield play a key role in determining the size of a reactor since it has an impact on the various reactor components. The blanket should produce enough tritium for tritium self-sufficiency and the shield should provide sufficient protection for the superconducting TF coil. Neutronic optimization of the blanket and the shield is necessary, and we coupled the system analysis with a neutronic calculation to account for the interrelation of the blanket and shield with the plasma performance of a reactor system in a self-consistent manner. By using the coupled system analysis code, the operational space for a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil is investigated with an spect ratio in the range of 1.5 - 2.5. The minimum major radius which satisfies all the physics and engineering requirements increases with the magnetic field at the magnetic axis. A required inboard shield thickness is mainly determined by the requirement on the protection of the TF coil against radiation damage. It is shown that to have a fusion power bigger than 3,000 MW in the LAR tokamak with a superconducting TF coil, a major radius bigger than 4.0 m is required.

  • PDF

Current status of Jeju special self-governing province's water infrastructure and direction for improvement (제주특별자치도 물인프라 현황 및 개선방향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • This paper investigates the current status of Jeju special self-governing province (JSSGP)'s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.

Design optimization of cylindrical burnable absorber inserted into annular fuel pellets for soluble-boron-free SMR

  • Jo, YuGwon;Shin, Ho Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1464-1470
    • /
    • 2022
  • This paper presents a high performance burnable absorber named as CIMBA (Cylindrically Inserted and Mechanically Separated Burnable Absorber) for the soluble-boron-free SMR. The CIMBA is the cylindrical gadolinia inserted into the annular fuel pellets. Although the CIMBA utilizes the spatial self-shielding effect of the fuel material, a large reactivity upswing occurs when the gadolinia is depleted. To minimize the reactivity swing of the CIMBA-loaded FA, two approaches were investigated. One is controlling the spatial self-shielding effect of the CIMBA as burnup proceeds by a multi-layered structure of the CIMBA (ML-CIMBA) and the other is the mixed-loading of two different types of CIMBA (MIX-CIMBA). Both approaches show promising performances to minimize the reactivity swing, where the MIX-CIMBA is more preferable due to its simpler fabrication process. In conclusion, the MIX-CIMBA is expected to accelerate the commercialization of the CIMBA and can be used to achieve an optimal soluble-boron-free SMR core design.

Investigating the combination of natural and crushed gravel on the fresh and hardened properties of self-compacting concrete

  • Moosa Mazloom;Mohammad Ebrahim Charmsazi;Mohammad Hosein Parhizkari
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Self-compacting concrete is widely used around the globe today due to its special and unique properties. This study examines the effect of natural and crushed gravel combinations in different percentages in short-and long-term properties of concrete. The best utilized sand had a fineness modulus of 2.7. In the mentioned mix designs, silica fume was used with 0 and 7% of the weight of the cement. In order to check the properties of fresh and hardened concrete, 9 and 5 test types were performed, respectively. The carried out tests were slump flow, V-funnel, J-ring, L-box, U-box and column segregation for fresh concrete, and compressive, tensile and flexural strengths for hardened concrete. A mix with only 100% natural gravel was considered as the control mix. According to the results, the control mix design and the one containing 100% crushed gravel with silica fume were the best in fresh and hardened concrete tests, respectively. Finally, using the optimization method, a mix design with 25% natural gravel, 75% crushed gravel and silica fume was introduced as the best mix in terms of the results of both fresh and hardened concrete tests.

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

A Preliminary Study on Public Convergent Space optimized for the Digital Convergence Era (디지털 컨버전스에 최적화된 공적융합공간 개발 시론)

  • Kim, Dong-Seop
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.6
    • /
    • pp.79-91
    • /
    • 2012
  • In the Digital Convergence era, the center of social networking is moving into on-line space. This means also that space for public is moving into the on-line space. Along with this, spaces in commercial area, offered as attraction factors, are taking a role as a public space. So, this paper defines these spaces mentioned above as public space and the like. Liberal and affluent communication of Digital Convergence has caused in new spatial cognitions such like, constant social space, flowing space, temporary space, and multiple space. This means the hybridization of on-line and off-line space and the advent of public convergent space. However, it is on-line-centered convergence and has positive effects and negative effects on relationship. This paper suggests the optimization of public convergent space to solve the problems and make better a public space for relationship. For achieving this, social disclosure is grasped as the common way to start relationship both off-line and on-line, and it is proved that social disclosure has three characters such as self-presentation, corporeality, and subjectivity. Subsequently, the differences of the roles of off-line and on-line space are separated by each individual character. These are self-presentation of performance vs. storytelling, corporeality of embodiment vs. disembodiment, and self-subjectivity vs. inter-subjectivity. By recognizing that there are multilevel spectrums between the formers and the latters, this paper presents the direction of the spatial configuration of public convergent space which offers the right of manipulation of self-disclosure. It will be used for presenting the prototype of public convergent space.

  • PDF

GPU-Optimized BVH and R-Triangle Methods for Rapid Self-Intersection Handling in Fabrics

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.59-65
    • /
    • 2024
  • In this paper, we present a GPU-based acceleration of computationally intensive self-collision processing in triangular mesh-based cloth simulation. For Compute Unified Device Architecture (CUDA)-based parallel optimization, we propose 1) an efficient way to build, update, and traverse the Bounding Volume Hierarchy (BVH) tree on the GPU, and 2) optimize the Representative-Triangle (R-Triangle) technique on the GPU to minimize primitive collision checking in triangular mesh-based cloth simulations. As a result, the proposed method can handle self-collisions and object collisions of cloth simulation in GPU environment faster and more efficiently than CPU-based algorithms, and experiments on various scenes show that it can achieve simulation results that are 5x to 10x faster. Since the proposed method is optimized for BVH on GPU, it can be easily integrated into various algorithms and fields that utilize BVH.