• Title/Summary/Keyword: Self-optimization

Search Result 356, Processing Time 0.033 seconds

Computer-Aided Design of Involute Cylindrical Gears for Power Transmission (컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계)

  • 정태형;김민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.594-602
    • /
    • 1990
  • A computer-aided design system of involute cylindrical gears(spur and helical gears) for power transmission is developed, in which the volume of a gear unit is minimized with satisfying various design constraints. As the design constraints, bending strength and pitting resistance of AGMA 218.01, scoring of Dudley's flash temperature, contact ratio, and involute interference of pinion are considered and effective factors for strength calculation(life, reliability, hardness ratio, load distribution, velocity, etc.) are also included. This complicated nonlinear optimization problem is solved by using ALM(Augmented-Lagrange-Multiplier) method with self scaling BFGS(Broydon-Fletcher-Goldfarb-Shanno) method employed for unconstrained optimization programming. This design method can be easily applied to designing power transmission gear unit in the machines of various kinds. It is expected for the proposed method to be a contribution for an automated design of gear unit towards weight minimization, miniaturization and high strength of gear unit.

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

A NEW PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2009
  • A primal-dual interior point method(IPM) not only is the most efficient method for a computational point of view but also has polynomial complexity. Most of polynomialtime interior point methods(IPMs) are based on the logarithmic barrier functions. Peng et al.([14, 15]) and Roos et al.([3]-[9]) proposed new variants of IPMs based on kernel functions which are called self-regular and eligible functions, respectively. In this paper we define a new kernel function and propose a new IPM based on this kernel function which has $O(n^{\frac{2}{3}}log\frac{n}{\epsilon})$ and $O(\sqrt{n}log\frac{n}{\epsilon})$ iteration bounds for large-update and small-update methods, respectively.

  • PDF

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Process Optimization for High Frequency Performance of InP-Based Heterojunction Bipolar Transistors

  • Song, Yongjoo;Jeong, Yongsik;Yang, Kyounghoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • In this work, process optimization techniques for high frequency performance of HBTs are presented. The techniques are focused on reducing parasitic base resistance and base-collector capacitance, which are key elements determining the high frequency characteristics of HBTs. Several fabrication techniques, which can significantly reduce the parasitic elements of the HBTs for improved high frequency performance, are proposed and verified by the measured data of the fabricated devices.

A Study on the Determination of the Oil Gap in the Hydrostatic Spindle System for a Crank Shaft Grinding Machine (크랭크 샤프트 연삭기용 유정압 스핀들의 유막 간격 선정에 관한 연구)

  • Park, Dong-Keun;Choi, Chi-Hyuk;Lee, In-Jae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-415
    • /
    • 2011
  • A cylindrical type of self-controlled restrictor is designed for hydrostatic bearing of crank shaft for a grinding wheel spindle. The effect of operation parameters, clearance between spindle and housing on bearing stiffness are analyzed to determine the optimum conditions of operation parameters. The lowest values of the supply pressure and the loads by the theoretical and experimental results assuming oil film thickness and shape of pocket are compared.

A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_*(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

  • Cho, You-Young;Cho, Gyeong-Mi
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.

General Coupling Matrix Synthesis Method for Microwave Resonator Filters of Arbitrary Topology

  • Uhm, Man-Seok;Lee, Ju-Seop;Yom, In-Bok;Kim, Jeong-Phill
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.223-226
    • /
    • 2006
  • This letter presents a new approach to synthesize the resonator filters of an arbitrary topology. This method employs an optimization method based on the relation between the polynomial coefficients of the transfer function and those of the $S_{21}$ from the coupling matrix. Therefore, this new method can also be applied to self-equalized filters that were not considered in the conventional optimization methods. Two microwave filters, a symmetric 4-pole filter with four transmission zeros (TZs) and an asymmetric 8-pole filter with seven TZs, are synthesized using the present method for validation. Excellent agreement between the response of the transfer function and that of the synthesized $S_{21}$ from the coupling matrix is shown.

  • PDF