• Title/Summary/Keyword: Self-hardening

Search Result 77, Processing Time 0.022 seconds

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

Early Hardening Behavior of Natural Hydraulic Lime Paste by Multiple Light Scattering Analysis (Multiple Light Scattering 분석법을 이용한 천연수경성석회의 초기경화 거동)

  • Moon, Ki-Yeon;Cho, Kye-Hong;Cho, Jin-Sang;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In the present study, the multiple light scattering method was used for analysis of early hardening behavior of natural hydraulic lime (NHL) containing inorganic additives. In order to improve the properties of self-manufactured NHL, blast furnace slag and three types of gypsum were mixed with mixing ratio, and a water/solid ratio of fresh NHL paste was fixed 0.6. The fresh pastes in flat-bottomed cylindrical glass tubes were placed in the instrument. The backscattering flux (BS) of light from fresh pastes was then periodically measured at 10 minutes intervals the entire length of the sample (55mm) at $23^{\circ}C$ for 24 hours. The rate of increase of BS, slope of a linear equation to the mean value of BS (%) as a function of hydration time, was increased from 0.02 to 0.38 BS %/hour due to addition of blast furnace slag and gypsum. In the case of addition of hemi-hydrate, BS (%) and rate of increase in BS were highest.

Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent (CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2011
  • In this study, experimental tests of chemical and autogenous shrinkage were performed to evaluate the early age shrinkage behaviors of ultra high performance cementitious composites (UHPCC) with various replacement ratios of silica fume (SF), shrinkage reducing agent (SRA), expansive admixture (EA), and superplasticizer (SP). Starting time of self-desiccation, was analyzed by comparing the setting times and the deviated point of chemical and autogenous shrinkage strains. The test results indicated that both SF and SRA augment the early age chemical shrinkage, whereas SP delays the hydration reaction between cement particles and water, and reduces chemical shrinkage. About 49% of autogenous shrinkage was depleted by synergetic effect of SRA and EA. The hardening of UHPCC was catalyzed by containing EA. Self-desiccation of UHPCC occurred prior to the initial setting due to the high volume fraction of fibers and low water-binder ratio (W/B).

Thermal Recovery Behaviors of Neutron Irradiated Mn-Mo-Ni Low Alloy Steel (중성자에 조사된 Mn-Mo-Ni 저합금강의 열처리 회복거동)

  • Jang, Gi-Ok;Ji, Se-Hwan;Sim, Cheol-Mu;Park, Seung-Sik;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.327-332
    • /
    • 1999
  • The recovery activation energy, the order of reaction and the recovery rate constant were detemined by isochronal and isothermal annealing treatment to investigate the recovery behaviors of neutron irradiated Mn-Mo-Ni low alloy steels$(fluence: 2.3\times10^{19}ncm^{-2}, 553K, E\geq1.0 MeV)$. Vickers microhardness tests were conducted to trace the recovery behavior after heat treatments. The results were analyzed in terms of recovery stages, behavior of responsible defects and recovery kinetics. It was shown that recovery occurred through two annealing stages(stage I : 703-753K, stage n : 813-873K) with re$\infty$very activation energies of 2.5 eV and 2.93 eV for each stage I and n, respectively. From the comparison of unirradiated and irradiated isochronal anneal curves, a radiation anneal hardening(RAH) peak was identified at around 813K. Most of recovery have occurred during about 120 min irrespective of isothermal annealing temperatures of 743K and 833K. Recovery rate constants were determined to be $3.4\times10^{-4}min^{-1} and 7.1\times10^{-4}min^{-1}$ for stage I and II, respectively. The order of reaction was about 2 for both recovery stages. Comparing the obtained data with those of previously reported results on neutron irradiated Mn- Mo- Ni steels, the thermal recovery be­havior of the present material seems to occur by the dissociation of point defect clusters formed during irradiation, and by the recombination process of self-interstitials and vacancies from dissociated vacancy clusters.

  • PDF

A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization (미생물의 생체광물형성작용을 이용한 자기치유 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Kim, Sung-Tae;Park, Sung-Jin;Ghim, Sa-Youl;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.501-511
    • /
    • 2009
  • This study was conducted to develop self-healing ability of concrete so that inspection could be available even in the event of minute cracks without complex works at any time for more economic concrete structure maintenance and longevity. A completely different method has been carried out in comparison with many of similar researches on self-healing concrete. This is a basic study on the development of self-healing concrete using microbial biomineralization. Compounds were generated except for cells by precipitation reaction of CaC$O_3$ during the microbial metabolism and we examined the use as a binder that hardens the surface of sand using biomineralization that Sporosarcina pasteurii precipitates CaC$O_3$. In result, the formation of new mineral and hardening of sand surface could be verified partly, and it was available for cracks to be repaired by calcite with organic (microorganism) and inorganic (CaC$O_3$) complex structure through the basic experiment a little bit. Therefore the use of biomineralization by this sort of microbial metabolism for concrete structure helps to develop absolute repair-concrete like this concrete with microorganism. The effect of microbial application will be one of the most important research tasks having influence on not only repair for concrete structure but also development of new materials able to reduce environmental problems.

Behavior of Soft Ground Throughout Mock-up Test Using Low Self Weight Banking Method (경량성토 모형시험을 통한 연약지반상의 성토제체의 거동)

  • Kim, Sang Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.85-91
    • /
    • 2011
  • This study aims at evaluating feasibility of Bottom ash-mixed Foam Cement Banking(BFCB) Method on the enhancement of soft soil, which is developed to reduce self-weight of banking by applying bottom ash and foam. to cement slurry. In order to measure the behavior of soil when BFCB layer was covered to soft ground, a testing equipment for mock-up test was fabricated and phased loads were applied up to measurement of yielding and ultimate strengths as well as movement of ground particles. In addition, these measured values such as settlement and heaving were compared with ones of surface-hardening method prevailing on soil improvement. As the result through mock-up test, BFCB showed lower values of ground deformation, while wider range of deformation was observed in compare to the other method. And settlement and heaving were measured lower, which implies the method developed is very effective to applicability of soft ground.

A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag (고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구)

  • Lim, Myung-Kwan;Park, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.

The Pregnant Women's Decision-making Process about Their Infants Feeding Method (어머니의 수유방법에 관한 의사결정과정)

  • Jeong, Geum-Hee;Kim, Shin-Jeong
    • Women's Health Nursing
    • /
    • v.6 no.2
    • /
    • pp.203-217
    • /
    • 2000
  • The purpose of this study was done to explore the pregnant women's decision-making process about their infants feeding method. Data collection involved the in-depth unstructured interviews with 12 participants from January 1998 to January 1999. Data analysis was done by the grounded theory method. The 112 concepts, 29 sub-categories were confirmed in the analysis. The sub-categories were again grouped into 14 categories: expectation, situational condition, inevitability of breast-feeding, social recognition, self-awareness as mother, harmony, consideration, pursuit of ease, effect of external environments, lack of knowledge, hardening, the best choice, control, and bargain. " Adjustment through recognizing of motherhood" was the key category that was related to all categories. "Adjustment through recognizing of motherhood" was a process in which the mother became aware of mothering and sharing, and in which she considered herself or infant's needs and their priorities. This research will help nurse to understand mother's needs better. Therefore, nurse will be able to assist mother making the best decision for herself and her infant.

  • PDF

Heavy Metal Ion Immobilization Properties of Microporous Ettringite Body (에트린자이트 미세다공체의 중금속 이온 고정화 특성)

  • Na, Hyeon-Yeop;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • Heavy metal ion immobilization properties of microporous ettringite (3Ca$O{\cdot}Al_2O_3{\cdot}3CaSO_4{\cdot}32H_2$) body were examined using standard solutions of typical heavy metals. Microporous Ettringite body with desirable shape for an ionic adsorbent was obtained by the self hardening of the paste prepared from the mixture of tricalcium aluminate($C_3$A) and gypsum(CaS$O_4{\cdot}2H_2$O). Crushed grains of ettringite were soaked in each standard solutions of Pb, Co, Cd, Mn and Cr concentrated at 200 ppm. In order to evaluate the ionexchange and immobilization ability, the ionic concentration of the filtrate solution as well as the solution obtained after leaching test was measured. As a result, for the heavy metal ions excepting Cr, porous ettringite body was revealed to be excellent in ionic exchange and immobilization properties though some ions eluted at the severe condition of pH 2. The adsorption and keeping capacity for four heavy metals showed the order of $Pb{>}Co{>}Cd{>}$Mn.