• 제목/요약/키워드: Self-hardening

검색결과 77건 처리시간 0.025초

CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석 (Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method)

  • 김성호;박남수;송정한;노우람;박근영;배기현
    • 소성∙가공
    • /
    • 제29권5호
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

Electron Microscope Analyses of Self-aligned HgTe Nanocrystallites Induced by Controlled Precipitation Technique

  • Lee, Man-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권3호
    • /
    • pp.8-13
    • /
    • 2002
  • Controlled precipitation of quasi-binary semiconductor system is newly proposed as an effective and reliable technique for the formation of well-defined and crystallographically aligned semiconductor nanostructures. Using HgTe-PbTe quasi-binary semiconductor system, self-aligned HgTe nanocrystallites distributed three dimensionally within PbTe matrix were successfully formed by the simple three step heat treatment process routinely found in age hardening process of metallic alloys. Examination of the resulting nano precipitates using conventional transmission electron microscopy (CTEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the (100) habit planes making a crystallographic relation of {100}$\_$HgTe///{100}$\_$PbTe/ and [100]$\_$HgTe///[100]$\_$PbTe/. It is also found that the precipitate undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4-5 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for preparing desirable quantum-dot nanostructures.

플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성 (The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag)

  • 이승한;정용욱;박정준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

후란자경성(自硬性) 주형용(鑄型用) 국산인조규사(國産人造硅砂)의 활용(活用)에 관(關)한 연구(硏究) (Study on the Application of Domestic Artificial Sands for the Self-hardening Molding Process by Using Furan Resin)

  • 최창옥;이상윤
    • 한국주조공학회지
    • /
    • 제1권3호
    • /
    • pp.19-29
    • /
    • 1981
  • An emphasis has been placed on the importance of selecting a sand for furan sand process, which ie affected by the properties of sand. Investigations have been carried out to use the domestic artificial sands for the furan sand process. For laboratory investigations, the sands have been prepared and tested for chemical analysis, loss on ignition, sieve analysis, AFS grain fineness number, grain shape, PH value, acid demand, surface shape, theoretical surface area, moisture absorption, crushing durability and compressive strength and S. S. I. of molding sands. Most commercial sands have been found to be able to be used. The main requirement of the sands has been shown to be that 3 or 4 screen sands, AFS no.40-70 (or 100), of low acid demand, good surface area and good grain shape require less resin and catalyst to give an adequate strength.

  • PDF

Strength Characteristics of Stabilized Dredged soil and Correlation with Index Properties

  • 김윤태;도탕하이;강효섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.489-494
    • /
    • 2010
  • A geo-composite soil (GCS) is a stabilized mixture of bottom ash, cement and dredged soil. Various samples with different mass ratios of mixtures were tested under curing time of 7 and 28 days to investigate physical properties and compressive strength. This paper focused on the effect of bottom ash on the strength characteristics of Busan marine dredged soil. Cement has been added as an additive constituent to enhance self-hardening of the blended mixture. The unconfined compressive strength of GCS increases with an increase in curing time due to pozzolanic reaction of the bottom ash. The strength after 28 days of curing is found to be approximately 1.3 to 2.0 times the strength after 7 days of curing, regardless of mixture conditions. The secant modulus of GCS is in the range of 55 to 134 times the unconfined compressive strength. The correlation of unconfined compressive strength with bottom ash content and initial void ratio are suggested.

  • PDF

디지털이미지를 이용한 폐기물 혼합 콘크리트의 강도 평가 (Evaluation of strength of waste material mixed concrete using digital image)

  • 윤현석;이기호;박준범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1390-1395
    • /
    • 2005
  • To analyze the effects of oyster shell particles, inserted in the self-hardening matrix such as cement paste, on strength, homogenization analysis using micro structure was used to estimate and assess the apparent elastic modulus of oyster shell particle. DIB modeling technique was used to represent of the micro structure of oyster shell mixed concrete. The results showed that the apparent elastic modulus of LOS (large oyster shell particle) was changed with the amount of LOS inserted. In particular, when the amount of LOS was 200% of the weight of cement, the apparent elastic modulus of LOS tended to decrease rapidly. This could mean that the strength of oyster shell mixed concrete is much affected by LOS inserted material in mixed ratio of 200%.

  • PDF

고인성 섬유복합재료 ECC (Engineered Cementitious Composite)의 시공성 (Processibility of High Ductile Fiber-Reinforced ECCs (Engineered Cementitious Composites))

  • 김윤용;김정수;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.313-316
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced cementitious composite ECC, which exhibits tensile strain-hardening behavior in the hardened state, optimizing both processing mechanical properties for specific applications is critical. This study introduced a method to develop useful ECCs in field, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing, while retaining the ductile material properties. To control the rheological properties of the composite, we first determined basic ECC compositon, which is based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of suspensions were, then, mediated by optimizing dosages of chemical and mineral admixtures. The rheological properties altered by this approach were revealed to be effective in obtaining ECC hardened properties, allowing us to readily achieve the desired function of the fresh ECC.

  • PDF

Investigation on low velocity impact on a foam core composite sandwich panel

  • Xie, Zonghong;Yan, Qun;Li, Xiang
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.159-172
    • /
    • 2014
  • A finite element model with the consideration of damage initiation and evolution has been developed for the analysis of the dynamic response of a composite sandwich panel subject to low velocity impact. Typical damage modes including fiber breakage, matrix crushing and cracking, delamination and core crushing are considered in this model. Strain-based Hashin failure criteria with stiffness degradation mechanism are used in predicting the initiation and evolution of intra-laminar damage modes by self-developed VUMAT subroutine. Zero-thickness cohesive elements are adopted along the interface regions between the facesheets and the foam core to simulate the initiation and propagation of delamination. A crushable foam core model with volumetric hardening rule is used to simulate the mechanical behavior of foam core material at the plastic state. The time history curves of contact force and the core collapse area are obtained. They all show a good correlation with the experimental data.

High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리 (Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser)

  • 황현태;송현수;김종도;송무근;김영국
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.

CO2레이저 비임을 이용한 표면경화 처리중 형성된 AISI 4140의 잔류응력에 관한 연구 (A Study on the Residual Stress of AISI 4140 Formed during Surface Hardening Treatment by using the CO2 Laser Beam)

  • 박근웅;이준범;한유희;이상윤
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.289-299
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on the microstructure, hardness and residual stress of AISI 4140 treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite in outermost surface layer and fine lath martensite in inner surface hardened layer are formed under the condition of a given power density and traverse speed. Hardness measurements have revealed that as the power density increases at a given 2.0m/min of the traverse speed, the maximum hardness values of outermost surface hardened layer is increased from Hv=635 to Hv=670. X-ray analysis for residual stress has exhibited that low compressive residual stress values are obtained in center point of the cress section of surface hardened layer with in mid point between the edge and the center point, about 1.5mm from the center point, due simply to a difference in self-quenching rate. It has been shown that the higher the power density at a given traverse speed and the olwer the traverse speed at a given power density, the more the compressive residual stress values are increased due to an increase in the input heat of laser beam.

  • PDF