• Title/Summary/Keyword: Self-flux

Search Result 227, Processing Time 0.019 seconds

Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method (다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Effect of Post Heat Treatment on Wear Characteristics of Thermally Sprayed Co-based Self-flux Alloy Coating (코발트기 자융성합금 코팅의 마모특성에 미치는 후열처리의 영향)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.106-111
    • /
    • 2014
  • This article describes effect of post heat treatment on wear characteristics of thermally sprayed Co-based self-flux alloy coating. Co-based self-flux alloy coatings were deposited on steel substrates using a flame spray process. Post heat treatments were carried out at 800, 900, 1000 and $1100^{\circ}C$ for 30min in a vacuum chamber. For analysis of effect of post heat treatment on mechanical properties, wear test and hardness test were performed for post heat-treated coating specimen. Microstructures of heat treated coating layer and wear track were examined using SEM and EDS. Wear loss and hardness became lower with increasing post heat treatment temperature.

Self-Assembling Adhesive Bonding by Using Fusible Alloy Paste for Microelectronics Packaging

  • Yasuda, Kiyokazu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • In the modern packaging technologies highly condensed metal interconnects are typically formed by highcost processes. These methods inevitably require the precise controls of mutually dependant process parameters, which usually cause the difficulty of the change in the layout design for interconnects of chip to-chip, or chip-to-substrate. In order to overcome these problems, the unique concept and methodology of self-assembly even in micro-meter scale were developed. In this report we focus on the factors which influenced the self-formed bumps by analyzing the phenomenon experimentally. In case of RMA flux, homogenous pattern was obtained in both plain surface and cross-section surface observation. By using RA flux, the phenomena were accelerated although the self-formtion results was inhomogenous. With ussage of moderate RA flux, reaction rate of the self-formation was accelerated with homogeneous pattern.

Standstill Identification of Magnetic Flux Saturation Model Including Cross-Saturation for Synchronous Motors (상호 포화를 포함한 자기저항 동기 전동기의 자속 포화 모델에 대한 정지 상태 추정 기법)

  • Woo, Tae-gyeom;Park, Sang-woo;Choi, Seung-Cheol;Yoon, Young-Doo;Lee, Hak-Jun;Hong, Chanook;Lee, Jeongjoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.364-371
    • /
    • 2021
  • A magnetic flux saturation model of Synchronous Reluctance Motors (SynRMs) and a parameter estimation method are proposed at standstill. The proposed magnetic flux model includes the nonlinear relationship between the current and the magnetic flux for self-saturation and cross-saturation. Voltage is injected at standstill to estimate the magnetic flux saturation model. Voltages are injected into the d-axis and q-axis to obtain data on self-saturation. Subsequently, voltages are simultaneously injected into the d-q axis to obtain data on cross-saturation. On the basis of the measured current and the calculated magnetic flux, the parameters of the proposed model are estimated using the least square method (LSM). Simulation and experiment were performed on a 1.5-kW SynRM to verify the proposed method. The proposed model can be used to create a high-efficiency operation table, a sensorless algorithm, and a current controller to improve the control performance of a motor.

Distributions of the Magnetic Flux Density Near Down-Conductors Due to Various Impulse Currents (임펄스전류에 의한 인하도선 주위에서 자속밀도의 분포)

  • 이복희;장근철;이수봉;강성만;이승칠
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.109-115
    • /
    • 2004
  • This paper deals with the behaviors of magnetic flux density near down-conductors by lightning currents. The background on the principle of magnetic flux density measurements using the RL self-integrating magnetic field sensor was described. The magnetic flux density measuring device consisting of RL self-integrating magnetic field sensor and differential amplifier was designed and fabricated. The frequency bandwidth of the magnetic flux density measuring system ranges from 200 Hz to 300 KHz and the response sensitivity was 0.126 $\mu$T/㎷ The distributions of the magnetic flux density near down-conductors due to impulse currents with various rise times were analyzed as a parameter of the bonding conditions and materials of conductor and wiring conduits. The magnetic flux density due to impulse currents was inversely proportional to the distance between the down-conductor and measuring point. The amplitude of the magnetic flux density for PVC Pipe with down-conductor was 72 $\mu$T/㎷ at the distance of 1m and was higher than for steel conduits and coaxial cable. Finally the magnetic flux density is increased with increasing the di/dt it and oscillation frequency of lightning currents in this experimental ranges.

Effects of gas formers on metal transfer of the self-shielded flux cored arc welding (Self-shielded flux cored arc welding시 가스 발생제가 용적 이행 현상에 미치는 영향)

  • 정재필;김경중;황선효
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.40-45
    • /
    • 1985
  • Wire meling characteristics were examined with variation of gas formers such as $MgCO_3, CaCO_3 and Li_ 2CO_ 3$ by self-shielded flux cored arc welding. The flux cored wire of overlap type was welded by DCRP. The results obtainedareas follows. 1) Drop type was observed with no gas former, repelled type with MgCO_3$ added and short circuit type with $Li_2CO_3$ added. The variation of transfer mode was related to the blowing force of $CO_2$ gas and the surface tension of the slag. 2) Droplet size increased with adding gas formers due to the effect of $CO_2$ gas cushion. 3) Core spikes were observed more frequently with increasing the amount of gas formers.

  • PDF

A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam (경질 폴리우레탄폼의 착화성 및 열방출특성 연구)

  • 공영건;이두형
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.117-123
    • /
    • 2003
  • In this study; the ignition and heat release rate characteristics of rigid polyurethane foam were investigated in accordance with setchkin ignition tester and cone calorimeter which is using oxygen consumption principle. In the ignition temperature study; flash-ignition temperature was $383^{\circ}C$-$390^{\circ}C$, self-ignition temperature was$ 493^{\circ}C$∼495$^{\circ}C$. The self-ignition temperature of rigid polyurethane foam was about $100^{\circ}C$ higher than the flash-ignition temperature. In the cone calorimeter study, the time to ignition of rigid polyurethane foam was faster as the external heat flux increase. In the same heat flux level, the time to ignition was faster as the density of rigid polyurethane foam decrease. Also the heat release rate was the largest value at the heat flux of /$50 ㎾\m^2$ and had a tendency of increase as the heat flux level and density increase. In the standpoint of time to ignition and heat release rate, the fire performance of rigid polyurethane foam was influenced by the applied heat flux level and density and the flashover propensity classified by Petrella's proposal was high.

Polarization Characteristics of Heat-treated Ni-based Self-flux Alloy Coating in Alkaline Solution (후열처리한 니켈기 자융성 합금 코팅의 알칼리 용액에서의 분극특성)

  • Kim, Tea-Yong;Kim, Jea-Dong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2014
  • The purpose of this paper is to investigate polarization characteristics of heat-treated Ni-based self-flux alloy coating in alkaline solution. Ni-based self-flux alloy powder was sprayed to a steel substrate using flame spray process, and heat treatments were performed in a vacuum furnace at $800^{\circ}C$, $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. After heat treatments, corrosion tests were carried out using potentiostat/galvanostat at solution with pH 8 and pH 13. Corrosion potential(Ecorr) and corrosion current density(Icorr) could be analyzed from polarization curve. Anticorrosive effect of heat-treated coating at solution with pH 8 was relatively greater than at solution with pH 13. Heat-treated coating at $1100^{\circ}C$ showed the greatest anti-corrosion characteristics in alkaline solution.