• Title/Summary/Keyword: Self-driving Indoor

Search Result 9, Processing Time 0.025 seconds

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

A Study on the Development of Interior Design Service for Autonomous Vehicles - Focusing on STEEP analysis Techniques - (자율주행차 인테리어 디자인서비스 개발연구 - STEEP 분석 기법을 적용한 사례 중심으로 -)

  • Kang, Taeho;Cho, Jounghyung
    • Journal of Service Research and Studies
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • This study focused on indoor spaces and convenience devices among vehicle interior designs suitable for the autonomous driving era, and presented an interior design model for future automobiles by applying the STEEP analysis method. The service design methodology is applied to deal with changes in display devices installed for the purpose of rearranging layouts and providing driver-centered information. Changes in types and installation locations of displays for various purposes such as connected and infotainment are expected. In particular, through this analysis, trends and experiences through indoor interior research in future self-driving cars will be studied, and subsequent studies will be used as basic data for actual development and application. Key drivers were extracted after deriving future trends linking the research project conducted in five stages to STEEP and consulting experts through FGI. Through this, it was later presented as a direction for indoor design. Through user-centered participatory design methods, emotional keyword derivation methods were used, summarized the derived drivers in five major trends in the future society, and each derived drivers were grouped to consider the relevant technology fields, and added elements to the autonomous driving level. This is an indoor ray viewed from the perspective of various social issues as well as personal tendencies in the future self-driving car industry.

A path planning method for indoor Self-driving robot based on ROS (실내 자율주행을 위한 ROS 기반 이동 로봇의 경로 계획 방법)

  • Baek, Ji-Hoon;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.238-241
    • /
    • 2018
  • 본 논문은 Linux ubuntu에서 로봇 개발 플랫폼 ROS(Robot Operating System)을 이용하여 실내 자율주행 관련 패키지와 LRF센서를 사용한 경로탐색을 하기까지의 과정 그리고 향후의 설계 방안에 대해 다룬다.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Auto-driving System using RF Navigator in Indoor Environment (실내 환경에서 RF Navigator를 이용한 자동 주행 시스템)

  • Yoo, Jae-Bong;Shin, Hyeon-Jun;Seo, Jung-Taek;Kim, Sang-Yun;Park, Chan-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.468-472
    • /
    • 2007
  • 현재 다양한 기능의 로봇들이 개발되고 있으며 사람들의 관심 또한 확대되고 있다. 그 기능과 이용 분야 또한 다양하게 확산되고 있다. 본 연구에서는 무인 로봇의 이동에 있어서 지정된 동작만을 반복하는 단순한 이동 로봇이 아니라 사람의 눈과 같이 로봇이 방향과 거리를 스스로 계산하여 스스로 제어가 가능하고 동작을 할 수 있는 시스템을 설계하고 구현하였다. 본 연구에서는 크리켓(Cricket) 센서 네트워크 기술을 이용한 실내 위치 추적 시스템을 이용하여 무인 이동 로봇의 자가 제어(Self-Control)가 가능하도록 할 수 있는 자동 주행 시스템을 개발하였으며 그 결과를 기술하였다. 무인 이동 로봇의 자동 제어 시스템의 프로토타입을 구현해 봄으로써 크리켓 센서네트워크를 이용한 로봇의 위치 측정 및 제어가 유용하게 사용될 수 있음을 보이고 있다.

  • PDF

Study of assuming system on moving route of the indoor self driving robot (실내형 자율 주행 로봇의 이동 경로 추정 시스템에 관한 연구)

  • Lee, Jang-Woo;Jo, Kyung-Hwa;Jung, Hee-Seung;Kim, Eung-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.370-371
    • /
    • 2015
  • 자율 주행 로봇의 기본적인 기능에는 위치 추정 기능과 무선 통신 기능이 포함된다. 이미지 센서를 이용하여 로봇의 이동 위치를 추정하고, 무선통신은 ZigBee를 적용하였다. 본 논문에서는 자율 주행 로봇의 이동 위치 정보를 이미지센서를 이용하여 데이터를 취득 후 마우스 알고리즘을 통해 이동 데이터로 환산하였으며, 이동 데이터를 ZigBee통신을 통해 서버와 실시간 통신을 하였다. 이를 통해 로봇의 이동 정보를 실시간으로 취득할 수 있는 실내형 로봇 위치 추정 시스템을 구현하였다.

Suggestion to Use Unmanned Vehicle with IoT about LoRa Network (LoRa망을 이용한 무인이동체 IoT 활용법 제안)

  • Lee, Jae-Ung;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1691-1697
    • /
    • 2018
  • There has been a steady study of unmanned vehicle. So far, continuous research has brought news of the commercialization of unmanned vehicle. In addition, it has been applied in a variety of fields with another industry. A lot of research has been done, too, to apply inert driving indoors. Using LoRa network, which is a network dedicated to IoT, unmanned vehicle control system that is applied to LoRa network from a small space, or from an office hospital to a factory, is installed to increase efficiency when the performs special tasks. This paper presents solutions to a variety of problems by using LoRa network, which is dedicated to IoT, to recognize an unmanned vehicle as a single object, to communicate with surrounding objects, and to receive information necessary for driving indoors from a cloud server.

Deep Learning-based UWB Distance Measurement for Wireless Power Transfer of Autonomous Vehicles in Indoor Environment (실내환경에서의 자율주행차 무선 전력 전송을 위한 딥러닝 기반 UWB 거리 측정)

  • Hye-Jung Kim;Yong-ju Park;Seung-Jae Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • As the self-driving car market continues to grow, the need for charging infrastructure is growing. However, in the case of a wireless charging system, stability issues are being raised because it requires a large amount of power compared with conventional wired charging. SAE J2954 is a standard for building autonomous vehicle wireless charging infrastructure, and the standard defines a communication method between a vehicle and a power transmission system. SAE J2954 recommends using physical media such as Wi-Fi, Bluetooth, and UWB as a wireless charging communication method for autonomous vehicles to enable communication between the vehicle and the charging pad. In particular, UWB is a suitable solution for indoor and outdoor charging environments because it exhibits robust communication capabilities in indoor environments and is not sensitive to interference. In this standard, the process for building a wireless power transmission system is divided into several stages from the start to the completion of charging. In this study, UWB technology is used as a means of fine alignment, a process in the wireless power transmission system. To determine the applicability to an actual autonomous vehicle wireless power transmission system, experiments were conducted based on distance, and the distance information was collected from UWB. To improve the accuracy of the distance data obtained from UWB, we propose a Single Model and Multi Model that apply machine learning and deep learning techniques to the collected data through a three-step preprocessing process.