• 제목/요약/키워드: Self-compacting Concrete

검색결과 225건 처리시간 0.018초

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Incorporation of CrusHed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part I: Study of Formulation

  • Rmili, Abdelhamid;Ouezdou, Mongi Ben;Added, Mhamed;Ghorbel, Elhem
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.3-9
    • /
    • 2009
  • This paper examines the incorporation of the crushed sand (CS) and desert sand (DS) in the formation of self compacting concrete (SCC). These sands have been substituted for the rolled sand (RS), which is currently the only sand used in concretes and which is likely to run out in our country. DS, which comes from the Tunisian Sahara in the south, is characterized by a tight distribution of grains size. CS, a by-product of careers containing a significant amount of fines up to 15%, is characterized by a spread out granulometry having a maximum diameter of around 5mm. These two sands are considered as aggregates for the SCC. This first part of the study consists in analyzing the influence of the type of sand on the parameters of composition of the SCC. These sands consist of several combinations of 3 sands (DS, CS and RS). The method of formulation of the adopted SCC is based on the filling of the granular void by the paste. The CS substitution to the RS made it possible, for all the proportions, to decrease the granular voids, to increase the compactness of the mixture and to decrease the water and adding fillers proportioning. These results were also obtained for a moderate substitution of DS/CS (< 40%) and a weak ratio of DS/RS (20%). For higher proportions, the addition of DS to CS or RS did not improve the physical characteristics of the SCC granular mixture.

비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO) (Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness)

  • 도정윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권3호
    • /
    • pp.26-38
    • /
    • 2020
  • 자기 충전형 콘크리트의 배합물 설계는 전형적인 다기준의사결정의 과정이다. 본 연구에서는 실험설계법과 반응표면법을 이용하여 SCC 배합물 전산 설계가 가능하도록 재료성능 및 비용모델을 생성하고, 요구조건을 반영한 여러 성능 사이의 상대적 중요도를 산정하여 가중 다목적 설계문제로 정식화하여 수치최적해를 계산함으로써 비용효율을 고려한 SCC최적설계를 수행하였다. 실험비용과 시간을 고려하여 SCC의 수많은 요구성능 중 압축강도, 철근충전성, 재료분리저항성, 비용정보 등을 다목적 최적화의 목적함수로 설정하였다. 재료경제성을 최적재료설계프로세스에 합리적으로 반영함으로써 경제적 콘크리트배합설계를 수행할 수 있었으며, 본 연구 결과 실험점 계획에서부터 최적해 산출에 이르는 과정을 객관적인 프로세스로 구성함으로써 콘크리트 범용 최적재료설계기술 및 전산화를 기대할 수 있다.

Performance of self-compacting concrete with manufactured crushed sand

  • Benyamina, Smain;Menadi, Belkacem;Bernard, Siham Kamali;Kenai, Said
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2019
  • Self-compacting concretes (SCC) are highly fluid concrete which can flow without any vibration. Their composition requires a large quantity of fines to limit the risk of bleeding and segregation. The use of crushed sand rich in limestone fines could be an adequate solution for both economic and environmental reasons. This paper investigates the influence of quarry limestone fines from manufactured crushed sand on rheological, mechanical and durability properties of SCC. For this purpose, five mixtures of SCC with different limestone fines content as substitution of crushed sand (0, 5, 10, 15 and 20%) were prepared at constant water-to-cement ratio of 0.40 and $490kg/m^3$ of cement content. Fresh SCC mixtures were tested by slump flow test, V-funnel flow time test, L-box height ratio, segregation resistance and rheological test using a rheometer. Compressive and flexural strengths of SCC mixtures were evaluated at 28 days. Regarding durability properties, total porosity, capillary water absorption and chloride-ion migration were studied at 180 days. For the two test modes in fresh state, the results indicated compatibility between slump flow/yield stress (${\tau}_0$) and V-funnel flow time/plastic viscosity (${\mu}$). Increasing the substitution level of limestone fines in SCC mixtures, contributes to the decrease of the slump flow and the yield stress. All SCC mixtures investigated achieved adequate filling, adequate passing ability and exhibit no segregation. Moreover, the inclusion of limestone fines as crushed sand substitution reduces the capillary water absorption, chloride-ion migration and consequently enhances the durability performance.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

Local thin jacketing for the retrofitting of reinforced concrete columns

  • Yuce, Serkan Z.;Yuksel, Ercan;Bingol, Yilmaz;Taskin, Kivanc;Karadogan, H. Faruk
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.589-607
    • /
    • 2007
  • Two series of tests were conducted to investigate the behavior of local thin jacketing for the retrofitting of reinforced concrete (RC) columns. In the first series, four full-scale RC columns with a height of 400 cm and a 30 cm square cross-section were tested under constant axial load and reversed cyclic lateral displacements. The heavily damaged columns were retrofitted with local thin jacketing. Self-compacting concrete (SCC) was used in the production of 7.5 cm thick, four-sided jacketing. The height of the jacketing was 100 cm for one specimen and 200 cm for all others. In the second series, the retrofitted columns were retested with the same axial load and displacement history. The effectiveness of local thin jacketing in the retrofitting of RC columns was examined with respect to lateral strength, stiffness, inelastic load-deformation behavior and energy dissipation.

Influence of plastic viscosity of mix on Self-Compacting Concrete with river and crushed sand

  • Rama, J.S. Kalyana;Sivakumar, M.V.N.;Kubair, K. Sai;Vasan, A.
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.37-47
    • /
    • 2019
  • In view of the increasing utility of concrete as a construction material, the major challenge is to improve the quality of construction. Nowadays the common problem faced by many of the concrete plants is the shortage of river sand as fine aggregate material. This led to the utilization of locally available materials from quarries as fine aggregate. With the percentage of fines present in Crushed Rock Fines (CRF)or crushed sand is more compared to river sand, it shows a better performance in terms of fresh properties. The present study deals with the formulation of SCC mix design based on the chosen plastic viscosity of the mix and the measured plastic viscosity of cement pastes incorporating supplementary cementitious materials with CRF and river sand as a fine aggregate. Four different combinations including two binary and one ternary mix are adopted for the current study. Influence of plastic viscosity of the mix on the fresh and hardened properties are investigated for SCC mixes with varying water to cement ratios. It is observed that for an increasing plastic viscosity of the mix, slump flow, T500 and J-ring spread increased but V-funnel and L-box decreased. Compressive, split tensile and flexural strengths decreased with the increase in plastic viscosity.

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures

  • Mazloom, Moosa;Karimpanah, Hemin;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.375-386
    • /
    • 2020
  • In the present study, the effect of basalt, glass, and hybrid glass-basalt fibers on mechanical properties and fracture behavior of self-compacting concrete (SCC) mixes have been assessed at room and elevated temperatures. To do so, twelve mix compositions have been prepared such that the proper workability, flowability, and passing ability have been achieved. Besides, to make comparison possible, water to binder ratio and the amount of solid contents were kept constant. Four fiber dosages of 0.5, 1, 1.5, and 2% (by concrete volume) were considered for monotype fiber reinforced mixes, while the total amount of fiber were kept 1% for hybrid fiber reinforced mixes. Three different portions of glass and basalt fiber were considered for hybridization of fibers to show the best cocktail for hybrid basalt-glass fiber. Test results indicated that the fracture energy of mix is highly dependent on both fiber dosage and temperature. Moreover, the hybrid fiber reinforced mixes showed the highest fracture energies in comparison with monotype fiber reinforced specimens with 1% fiber volume fraction. In general, hybridization has played a leading role in the improvement of mechanical properties and fracture behavior of mixes, while compared to monotype fiber reinforced specimens, hybridization has led to lower amounts of compressive strength.