• Title/Summary/Keyword: Self-compacting Concrete

Search Result 227, Processing Time 0.024 seconds

A Study of the Characteristic Changes of Self-Compacting Concrete with mixing shifted contents of Steel Fibers (섬유 변화량에 따른 고유동 자기충전 콘크리트의 특성변화에 관한 연구)

  • Lee, Keun-Su;Choi, Yeol;Lee, Jae-Ik;Jung, Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.243-244
    • /
    • 2009
  • Fibers reinforced concrete(FRC) has abilities to make up for brittleness fracture as one of the material characteristics of concrete. However, being mixed with steed fibers in concrete mixes could set off a "Fiber Ball". The Fiber ball formation could be one of the main reasons to decrease the quality of Fibers reinforced concrete. In order to eliminate the fiber ball formation and improve the deficient flowablitiy, The necessity of research for fiber reinforced self-compacting concrete(FRC-SCC) should be raised.

  • PDF

A Study on the Strength Properties of Self-Compacting Concrete Utilizing Waste Concrete Podwer (폐콘크리트 미분말을 활용한 자기충전 콘크리트의 강도특성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Kim, Ki-Hyung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.489-492
    • /
    • 2004
  • Compressive strength of self-compacting concrete with waste concrete powder(SCCWCP) linearly decreased as the containing ratio of WCP increas. When granulated blast furnace slag(SG) was contained for improving the rheological properties of SCCWCP, compressive strength of concrete with $15\%$ SG and $15\%$ WCP was increased in comparison with that of concrete with $30\%$ WCP. Splitting tensile strength of SCCWCP higher increased than that of CEB-FIP at same compressive strength. Relationship between compressive strength and elastic modulus of SCCWCP indicated a similar function with CEB-FIP fuction.

  • PDF

Comparative Experimental Study on Structural Behavior of Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 장${\cdot}$단기거동 비교 분석)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.735-738
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using fly ash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF

Practical Experimental Study on Multi-component Self-Compacting Concrete (다성분계 고유동 콘크리트의 현장적용성 연구)

  • Noh Jea Myoung;Kwon Ki Joo;Nah Hwan Seon;Joung Won Seoup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.739-742
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

  • PDF

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Numerical approach to predict stress-strain model for tie confined self curing self compacting concrete (TCSCSCC)

  • P Swamy Naga Ratna Giri;Vikram Tati;Rathish Kumar P;Rajesh Kumar G
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Self-Curing Self Compacting Concrete (SCSCC), is a special concrete in contemporary construction practice aimed at enhancing the performance of structural concrete. Its primary function is to ensure a sufficient moisture supply that facilitates hydration along with flow, particularly in the context of high-rise buildings and tall structures. This innovative concrete addresses the challenges of maintaining adequate curing conditions in large-scale projects, maintaining requisite workability, contributing to the overall durability and longevity of concrete structures. For implementing such a versatile material in construction, it is imperative to understand the stress-strain (S-S) behaviour. The primary aim of this study is to develop the S-S curves for TCSCSCC and compare through experimental results. Finite element (FE) analysis based ATENA-GiD was employed for the numerical simulation and develop the analytical stress-strain curves by introducing parameters viz., grade of concrete, tie diameter, tie spacing and yield strength. The stress ratio and the strain ratios are evaluated and compared with experimental values. The mean error is 1.2% with respect to stresses and 2.2% in case of strain. Finally, the stress block parameters for tie confined SCSCC are evaluated and equations are proposed for the same in terms of confinement index.

Strength Propreties of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 강도 특성)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ha, Sang-Woo;Moon, Dae-Joung;Kang, Hyun-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.489-492
    • /
    • 2006
  • Needs for the new technologies and cutting-edge Ultra Flowing Self-Compacting Concrete are emerging as the concrete structures are becoming bigger and more specialized recently. In North America and Europe, SCC, which has high resistance against flow ability and segregation, is being used as concrete material in applications such as precast and prestressed bridges, where reinforcing bars are overcrowdedly placed. In Korea, SCC has been utilized limitedly in building structures but its utilization should be expanded to engineering structures such as bridges. In this study, for the application in precast and prestressed bridges with overlycrowded reinforcing bars, USCC was mixed with admixtures to give a binary system and a ternary system according to the 1st grade rules by JSCE (Japan Society of Civil Engineers). Compressive strength and splitting tensile strength of the resulting USCCs were tested. Elastic modulus were compared with the values suggested in CEB-FIP code and ACI 318-05.

  • PDF

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.