• 제목/요약/키워드: Self-assembled Monolayer

검색결과 258건 처리시간 0.031초

요소센서를 위한 3-mercaptopropionic acid 자기조립 단일층의 전기화학적 특성 분석 (Electrochemical characterization of 3-mercaptopropionic acid self-assembled monolayer for urea sensor)

  • 윤동화;송민정;김종훈;강문식;민남기;홍석인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1579-1581
    • /
    • 2004
  • 바이오센서는 효소(enzyme), 생분자(biomolecule), 항체(antibody), 세포(cell) 등의 biological agent를 인지 물질(recognition material)로 하여 측정하고자하는 분석 대상(analyte)과 높은 선택성으로 반응을 일으키게 하여 그 결과를 기존의 물리, 화학센서로 감지 해내는 방식이므로 기존의 의료용 화학센서를 대체하는 추세이다. 바이오센서가 기존의 센서와 구별되는 점은 생물질의 선택적인 반응 및 결합을 이용하는 것이므로 바이오센서의 실용화에 있어서 가장 중요한 것은 생체 반응 물질의 고정화 기술과 고정화막의 선택이라 할 수 있다. 일정전압법을 이용한 요소센서는 많이 연구되어 오고 있으나 낮은 농도에서의 감도저하에 따른 단점으로 상용화에 이르지 못하고 있다. 본 논문은 요소센서의 이용하기 위한 고정화막으로 3-mercaptopropionic acid 자기조립 단인층의 전기화학적 특성을 고창하였다. 자기조립 단일층은 직접적인 전자전달로 인하여 낮은 요소 농도에서 뛰어난 강도와 빠른 반응 시간을 보였으며, 특히 다공질 실라콘을 기질로 사용한 경우 평면 전극 보다 약 3배의 감도 증가 효과를 가져왔다. 자기조립 단일층의 표면 분석은 X-ray photoelectron spectroscopy(XPS)를 이용하였다.

  • PDF

나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현 (Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing)

  • 조정대;김광영;이응숙;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

나노 사이즈 hot embossing 공정시 폴리머의 영향 (Effect of polymer substrates on nano scale hot embossing)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Patterning of conducting polymer at micron- scale using a selective surface treatment

  • Lee, Kwang-Ho;Kim, Sang-Mook;Kim, Ki-Seok;Song, Sun-Sik;Kim, Eun-Uk;Jung, Hee-Soo;Kim, Jin-Ju;Jung, Gun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.834-836
    • /
    • 2008
  • We demonstrated micro-scale conducting polymer patterning based on a selective surface treatment. A substrate with a patterned photoresist was immersed into OTS (Octadecyltrichlosilnae) solution. The protected substrate areas were hydrophilic after removing the PR resist, where a conducting polymer solution was coated selectively by spin-coating method.

  • PDF

Fabrication of the solution-processible OLED/OTFT by the gravure printing/contact transfer: role of the surface treatment

  • Na, Jung-Hoon;Kim, Sung-Hyun;Kang, Nam-Su;Yu, Jae-Woong;Im, Chan;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1638-1641
    • /
    • 2008
  • We have investigated the effectiveness of a gravure printing method for the fabrication of organic light-emitting diode (OLED) and Organic Thin Film Transistor (OTFT). Printing of the organic layers was performed with a small-scale gravure coating machine, while the metallic layers were vacuum-evaporated. Devices with gravure-printed layers are at least comparable with the spin-coated devices. Effects of the solvent formulation and surface energy mismatch between the organic layer materials on the printed patterns and device performance were discussed. We will present the initial design and experimental data of OTFT fabricated by roll-type soft contact transfer process.

  • PDF

마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구 (Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces)

  • 백대현;;박상후
    • 한국정밀공학회지
    • /
    • 제32권6호
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

이송조립기술로 제조된 나노 박막의 기계적인 특성 평가에 관한 연구 (A study on mechanical characterization of nano-thick films fabricated by transfer assembly technique)

  • 최현주;김재현;이상주;이학주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.30-34
    • /
    • 2008
  • The transfer assembly (or transfer printing) technique is a promising method for fabricating multi-scale structures on various substrates including semiconductors and polymers, and has been applied to fabrication of flexible devices with superior performance to conventional organic flexible devices. The mechanical behaviors of the structures fabricated by the transfer assembly is a very important information for design and reliability evaluation purpose, but the measurement of the behaviors is difficult since their critical-dimensions are very tiny. In this study, Au films with nano-scale thickness were fabricated on a silicon substrate and their mechanical properties were measured using micro-tensile test. The Au films on the silicon substrate were then transferred to a PDMS substrate using the transfer assembly technique. Self-assembled monolayer (SAM) with a thiol group was used to enhance the transfer of Au films, and the mechanical behaviors were characterized using wrinkle-based test. The test results from micro-tensile and wrinkle-based test are compared to each other, and their implication to the transfer assembly technique is discussed.

  • PDF

Underwater Stability of Surface Chemistry Modified Superhydrophobic WOx Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.357.1-357.1
    • /
    • 2014
  • Superhydrophobic WOx nanowire (NW) arrays were fabricated using a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting WOx NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic WOx NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of WOx NWs arrays was conducted by changing hydrostatic pressure and surface energy of WOx NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of WOx NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가 (Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor)

  • 김기영;문지혜;엄애선;양길모;모창연;강석원;조한근
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.254-259
    • /
    • 2009
  • Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작 (Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process)

  • 김광영;조정대;김동수;이제훈;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF