• Title/Summary/Keyword: Self-Wastage Phenomena

Search Result 4, Processing Time 0.019 seconds

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

A Numerical Design and Feasibility Study of Self-Wastage Experiment Using Simulant Material in a Sodium Fast Reactor

  • Jang, Sunghyon;Takata, Takashi;Yamaguchi, Akira
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.368-375
    • /
    • 2016
  • A sodiume-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodiume-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called "self-wastage phenomenon." In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.

Reopening Phenomena of the 2.25Cr-1Mo Steel Specimen by Self-wastage (Self-wastage에 의한 2.25Cr-1Mo Steel 시편의 Re-open 현상)

  • Jeong, Kyung-chai;Kwon, Sang-woon;Choi, Jong-hyeun;Park, Jin-ho;Hwang, Sung-tai
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.531-536
    • /
    • 1999
  • Experiments on micro-leak of water were carried out with the water injecting simulator in liquid sodium atmosphere. The leak path was plugged by the sodium-water reaction products in the 2.25Cr-1Mo steel specimen. However, leak paths re-opened in most cases. The self-wastage patterns were not affected by the sodium temperature in the re-opened specimen. The diameter of the defected area, including the re-opened part, was about 5 min. It took 143, 40.7 and 34.7 minutes to re-open the leak path at 450, 475, and $510^{\circ}C$, respectively. It was concluded that the reopening time decreased with the increasing temperature.

  • PDF

Plugging and Re-opening Phenomena of the 5Cr-1Mo Steel Leak Hole by Water Leakage in Sodium Atmosphere (소듐 분위기에서 물누출에 의한 5Cr-1Mo Ferrite강 구멍의 막힘과 재개방 현상)

  • Jeong, Kyung-Chai;Kim, Tae-Joon;Choi, Jong-Hyeun;Park, Jin-Ho;Hwang, Sung-Tai
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • Small water leak experiment was carried out in liquid sodium atmosphere using a specimen of ferrite steel, which will be expected to be a material of the heat transfer tube of liquid metal fast breeder reactor. Self-plugging phenomena of leak path could be explained by the products of reaction and corrosion by sodium-water reaction. Also, re-opening mechanism of self-plugged path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect re-opening time of self-plugged leak path was observed to be 129 minutes after water leak initiation. Re-opening shape of a specimen was appeared with double layer of circular type, and re-opening size of this specimen surface was about 2 mm diameter on sodium side.

  • PDF