• 제목/요약/키워드: Self-Tuning Matlab/Simulink

검색결과 11건 처리시간 0.027초

이동로봇 선회를 위한 Type-2 Fuzzy Self-Tuning PID 제어기 설계 및 조향각 제어 (Type-2 Fuzzy Self-Tuning PID Controller Design and Steering Angle Control for Mobile Robot Turning)

  • 박상혁;최원혁;지민석
    • 한국항행학회논문지
    • /
    • 제20권3호
    • /
    • pp.226-231
    • /
    • 2016
  • 이동로봇의 제어는 로봇 분야에 있어 중요한 이슈이다. 이동로봇의 자율주행은 다양한 작업 환경에서 중시되고 있다. 자율 주행을 위해 이동로봇은 장애물을 감지, 회피하며 지능시스템을 도입한 제어 방식들을 사용해 충돌회피의 성능을 보완하는 연구가 활발히 진행되고 있다. 본 논문에서는 이동 로봇의 기구학적 모델을 분석하고 조향각 제어를 위한 type-2 fuzzy self-tuning PID 제어기를 설계하였다. Type-2 fuzzy 제어기는 type-1 fuzzy 제어기와 달리 복수 개의 값을 가지므로 언어표현의 모호함의 자유도가 높다. 본 논문에서는 설계된 제어기와 기존의 PID 제어기, type-1 fuzzy self-tuning PID 제어기를 비교하기 위한 방법으로 MATLAB Simulink를 사용하여 시뮬레이션을 하였다. 시뮬레이션 비교 결과 기존의 PID제어기와 type-1 fuzzy self-tuning PID 제어기의 성능보다 type-2 fuzzy self-tuning PID 제어기의 성능이 우수하다는 것을 확인하였다.

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어 (Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller)

  • 이영수;김재혁;오훈
    • 한국산학기술학회논문지
    • /
    • 제17권3호
    • /
    • pp.473-479
    • /
    • 2016
  • 본 논문은 가격이 저렴하고 친환경적이면서도 고성능, 고내구성, 구조적 단순함의 장점을 갖고 있어 최근에 폭넓은 관심을 받고 있는 스위치드 릴럭턴스 모터(SRM: Switched Reluctance Motor)의 보다 정확하고 안정적인 전류제어 방법에 대해 설명한다. 대부분의 전동기의 전류제어 방법에는 알고리즘과 제어 이득의 선정이 다른 제어기에 비해 상대적으로 간편한 PI 제어기를 이용한 방법이 주로 사용되어 왔다. 그러나 일반적인 PI 제어기는 SRM과 같이 고정자 권선의 전류 및 회전자의 위치마다 비선형적으로 파라미터가 급변하는 시스템의 경우 변하는 동작 지점마다 제어 이득을 조정해 주어야 하는 어려움이 발생한다. 본 논문에서는 비선형적으로 특성이 변하는 SRM 드라이브 시스템에 제어 성능이 우수한 자기동조 퍼지 제어기를 이용한 제어기법을 적용하여 비선형적인 파라미터의 변화에도 보다 안정적인 전류제어가 가능한 것을 보였다. 또한 Matlab/Simulink 시뮬레이션을 이용하여, SRM 드라이브의 전류제어에 PI 전류 제어기(PICC: PI Current Controller)와 자기동조 퍼지 전류 제어기(STFCC: Self-tuning Fuzzy Current Controller)를 각각 적용한 후 그 결과를 비교하였으며 제안한 자기동조 퍼지 제어기의 제어성능이 우수함을 확인하였다.

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control)

  • 김상민;한우용;이창구;이공희;임정흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

신경회로망 PI자기동조를 이용한 PV발전시스템의 MPPT제어 (MPPT Control of Photovoltaic System using Neural Network PI Self Tuning)

  • 이재훈;김은기;김대균;이상집;오봉환;이훈구;김용주;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.155-157
    • /
    • 2005
  • This paper shows how to design a MPPT control of PV system using neural network PI self tuning. The conventional self-tuning methods have the voltage control problem of nonlinear PV system which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the output voltage of DC-DC chopper. In this process, EBPA NN was constituted to an output error value of a DC-DC chopper and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method. The effectiveness of the proposed control method is verified thought the Matlab Simulink.

  • PDF

센서리스 유도전동기의 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Improved Neural Network-based Self-Tuning Fuzzy PID Controller for Sensorless Vector Controlled Induction Motor Drives)

  • 김상민;한우용;이창구;한후석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1165-1168
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for sensorless vector controlled induction motor drives. MRAS(Model Reference Adaptive System) is used for rotor speed estimation. When induction motor is continuously used long time. its electrical and mechanical parameters will change, which degrade the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. The proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using DS1102 board show the robustness of the proposed controller to parameter variations.

  • PDF

벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법 (A Self-Tuning Fuzzy Speed Control Method for an Induction Motor)

  • 김동신;한우용;이창구;김성중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

신경회로망 PI자기동조를 이용한 BLDC 모터제어 (BLDC Motor Control using Neural Network PI Self tuning)

  • 배은경;권중동;전기영;함년근;이승환;이훈구;정춘병;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.136-138
    • /
    • 2005
  • The conventional self-tuning methods have the speed control problem of nonlinear BLDC motor which can't adapt against any kinds of noise or operation circumstances. In this paper, supposed to solve these problem to PI parameters controller algorithm using ANN. In the proposed algorithm, the parameters of the controller were adjusted to reduce by on-line system the error of the speed of BLDC motor. In this process, EBPA NN was constituted to an output error value of a BLDC motor and conspired an input and output. The performance of the self-tuning controller is compared with that of the PI controller tuned by conventional method(Z&N). The effectiveness of the proposed control method IS verified thought the Matlab Simulink.

  • PDF

Design of Fuzzy PD Depth Controller for an AUV

  • Loc, Mai Ba;Choi, Hyeung-Sik;Kim, Joon-Young;Kim, Yong-Hwan;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a design of fuzzy PD depth controller for the autonomous underwater vehicle entitled KAUV-1. The vehicle is shaped like a torpedo with light weight and small size and used for marine exploration and monitoring. The KAUV-1 has a unique ducted propeller located at aft end with yawing actuation acting as a rudder. For depth control, the KAUV-1 uses a mass shifter mechanism to change its center of gravity, consequently, can control pitch angle and depth of the vehicle. A design of classical PD depth controller for the KAUV-1 was presented and analyzed. However, it has inherent drawback of gains, which is their values are fixed. Meanwhile, in different operation modes, vehicle dynamics might have different effects on the behavior of the vehicle. In this reason, control gains need to be appropriately changed according to vehicle operating states for better performance. This paper presents a self-tuning gain for depth controller using the fuzzy logic method which is based on the classical PD controller. The self-tuning gains are outputs of fuzzy logic blocks. The performance of the self-tuning gain controller is simulated using Matlab/Simulink and is compared with that of the classical PD controller.