• 제목/요약/키워드: Self-Propelling Type

검색결과 4건 처리시간 0.016초

Twist Wheel 방식 폐비닐수거기 개발에 관한 연구(I) - 자주형 비닐수거기의 개발 - (A Study on the Development of Twist Wheel Type Waste Vinyl Remover(I) - Development of Self-Propelling Type Vinyl Remover -)

  • 하유신;박규식;김진현;최중섭;손철민;남상헌;김태욱
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.113-118
    • /
    • 2012
  • Mulching vinyl is used on field crops to reduce herbicides and this causes multiple effects. The mulching vinyl must be collected for the next crop season, but was left alone due to a shortage of labor. The used mulching vinyl that was left alone acted as one of the main sources of environmental pollution on farms. In order to solve these problems, a self-propelling vinyl remover was developed. The self-propelling vinyl remover consists of a travelling part and rotating of remover wheel. Each output device has a 1.5ps engine and a 2.5ps engine. The vinyl was twisted 17~47cm/times length. The bobbin's diameter was 160mm and it's stable travelling speed was 0.5m/s. The revolution of the remover wheel bobbin was 60rpm to maintain the wheel's linear velocity. As seen at performance test at the field which had 950mm ridge intervals and 10a area, the average working speed was 0.56m/s and the turning time was 15seconds. Therefore, the working performance was 40.1min/10a.

내시경 로봇을 위한 웜구동 방사형 이동메커니즘 (Radial Type Locomotive Mechanism with Worm for Robotic Endoscope)

  • 김경대;이승학;김병규;박종오
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.220-225
    • /
    • 2002
  • In this paper, we suggest a new locomotive mechanism fur self-propelling robotic endoscope which could substitute conventional endoscope. Many researchers proposed inchworm-like mechanism for self-propelling robotic endoscope. But it could not be commercialized because they did not solve the limitation caused by clamping. Therefore, we suggest a new radial-type locomotive mechanism with worm. It can propel itself in any situation and take passive-steering because of radial type. In addition, it can be miniaturized with worm. In this paper, we evaluate the mechanism in the dead pig colon as well as under various environments, and verify the performance fur robotic endoscope.

Twist Wheel 방식 폐비닐수거기 개발에 관한 연구(II) - 트랙터 부착형 수거기의 개발 - (A Study on the Development of Twist Wheel Type Waste Vinyl Remover (II) - Development of Tractor Attached Vinyl Remover -)

  • 하유신;박규식;김진현;최중섭;손철민;남상헌;김태욱
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.79-84
    • /
    • 2012
  • This study consist of two parts. One is development of a self-propelling vinyl remover which was already reported at the previous paper. This is the second part of the study. For the study, an attached vinyl remover was developed. It was consisted of connecting tractor to bucket, removing bucket from tractor, and the process was the tractor's assistance hydraulics. In the case of an attached vinyl remover, the vinyl was twisted 0.5times per 30~85cm length. The bobbin's diameter was 190mm and it's stable travelling speed was 1m/s. The revolution of the remover wheel was 90rpm to maintain the wheel's linear velocity. As seen at performance test at the field which had 950mm ridge intervals and 10 a area, the average working speed was 1m/s and the turning time was 20seconds. Therefore, the working performance was 24.5min/10a. The efficiency of used vinyl remover was 97% and working conditions were good.

자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구 (Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope)

  • 임영모;박지상;김병규;박종오;김수현
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF