• Title/Summary/Keyword: Self-Patterning

Search Result 115, Processing Time 0.031 seconds

Chemical Solution Deposition of PZT/Oxide Electrode Thin Film Capacitors and Their Micro-patterning by using SAM

  • Suzuki, Hisao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.907-912
    • /
    • 2005
  • Micro-patterns of $Pb(Zr_{0.53}Ti_{0.47})O_3$, PZT, thin films with a MPB composition were deposited on $Pt/Ti/SiO_2/Si$ substrate from molecular-designed PZT precursor solution by using self-assembledmonolayer(SAM) as a template. This method includes deposition of SAM followed by the optical etching by exposing the SAM to the UV-light, leading to the patterned SAM as a selective deposition template. The pattern of SAM was formed by irradiating UV-light to the SAM on a substrate and/or patterned PZT thin film through a metal mask for the selective deposition of patterned PZT or lanthanum nickel oxide (LNO) precursor films from alkoxide-based precursor solutions. As a result, patterned ferroelectric PZT and PZT/LNO thin film capacitors with good electrical properties in micrometer size could be successfully deposited.

  • PDF

$\mu$CP Process Technology for Nanopattern Implementation (나노패턴 구현을 위한 $\mu$CP 공정기술)

  • 조정대;신영재;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.624-627
    • /
    • 2003
  • Microcontact printing (uCP) of alkanethiols on gold was the first representative of soft-lithography processes. This is an attempt to enhance the accuracy of classical to a precision comparable with optical lithography, creating a low-cost, large-area, and high-resolution patterning process. Microcontact printing relies on replication of a pattered PDMS stamp from a master to form an elastic stamp that can be inked with a SAM solution(monolayer -forming ink) using either immersion inking or contact inking. The inked PDMS stamp is then used to print a pattern that selectively protects the gold substrate during the subsequent etch.

  • PDF

Carbon Nanoscrolls from CVD Grown Graphene

  • Jang, A-Rang;Shin, Hyeon-Suk;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.574-574
    • /
    • 2012
  • We report a simple way of fabricating high-quality carbon nanoscrolls (CNSs) by taking advantage of strain relief due to large difference in strain at the interface of graphene and underlying layer. This method allows strain-controlled self rolling-up of monolayer graphene during etching process at predefined positions on SiO2/Si substrates by photolithography. The size and the length of the CNSs can be easily controlled by adjusting the thickness of the underlying layer and by pre-patterning. Raman spectroscopy studies show that the CNSs is free of significant defects, and the electronic structure and phonon dispersion are slightly different from those of two-dimensional graphene. The preparation of high-quality CNSs may open up new opportunities for both fundamental and applied research of CNSs.

  • PDF

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

A Roll-to-Roll Process for Manufacturing Flexible Active-Matrix Backplanes Using Self-Aligned Imprint Lithography and Plasma Processing

  • Taussig, Carl;Jeffrey, Frank
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.808-810
    • /
    • 2005
  • Inexpensive large area arrays of thin film transistors (TFTs) on flexible substrates will enable many new display products that cannot be cost effectively manufactured by conventional means. This paper presents a new approach for low cost manufacturing of electronic devices using roll-to-roll (R2R) processes exclusively. It was developed in partnership by Hewlett Packard Laboratories and Iowa Thin Film Technologies (ITFT), a solar cell manufacturer. The approach combines ITFT's unique processes for vacuum deposition and etching of semiconductors, dielectrics and metals on continuous plastic webs with a method HP has invented for the patterning and aligning the multiple layers of a TFT with sub-micron accuracy and feature size.

  • PDF

Templated solid-state dewetting of thin films

  • Ye, Jong-Pil;Thompson, Carl V.;Giermann, Amanda L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.54.2-54.2
    • /
    • 2012
  • Solid-state dewetting of thin films is a process through which continuous solid films decay to form islands. Dewetting of thin films has long been a critical issue in microelectronics and much effort has been made to prevent the process and enhance the stability of films. On the other hand, dewetting has also been purposely induced to create arrays of particles and other structures for applications, including plasmonic structures and catalysts for growing nanotube and nanowire. We have investigated ways of producing regular structures via templated dewetting of thin films. Mainly, two different approaches have been used in our works to template dewetting of thin films: periodic topographical templating and planar patterning of epitaxially-grown films. Dewetting of topographically-patterned thin films results in the formation of nanoparticle arrays with spatial and crystallographic orders. Morphological evolution during templated-dewetting of single crystal films occurs in deterministic ways because of geometric and crystallographic constraints, and leads to the formation of regular structures with smaller sizes and more complex shapes than the initial patches. These results will be reviewed in this presentation.

  • PDF

Application of Excited-State Intramolecular Proton Transfer (ESIPT) Principle to Functional Polymeric Materials

  • Park, Sang-Hyuk;Kim, Se-Hoon;Seo, Jang-Won;Park, Soo-Young
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.385-395
    • /
    • 2008
  • Synthesis and properties of novel excited-state intramolecular proton transfer (ESIPT) materials, recently developed in our group, are described. Highly efficient ESIPT reaction, achieved in polyquinolines, polybenzoxazoles, and oxadiazole and imidazole derivatives possessing an intramolecular tautomerizable hydrogen bond, has been investigated theoretically and experimentally. It is demonstrated that unique properties arising from the ESIPT process (large Stokes' shift, no self-absorption, and easy population inversion, etc.) make it possible to produce advanced polymer devices for lasing, optical storage, and electroluminescence.

All-Organic Nanowire Field-Effect Transistors and Complementary Inverters Fabricated by Direct Printing

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.632-632
    • /
    • 2013
  • We generated single-crystal organic nanowire arrays using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. The position of the nanowires on complex structures is easy to adjust, because the mold is movable on the substrates before the polar liquid layer, which acts as an adhesive lubricant, is dried. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with twoor three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Electrical properties of Organic TFT patterned by shadow-mask with all layer

  • Lee, Joo-Won;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.543-544
    • /
    • 2006
  • Pentacene thin film transistors fabricated without photolithographic patterning were fabricated on the plastic substrates. Both the organic/inorganic thin films and metallic electrode were patterned by shifting the position of the shadow mask which accompanies the substrate throughout the deposition process. By using an optically transparent zirconium oxide ($ZrO_2$) as a gate insulator and octadecyltrimethoxysilane (OTMS) as an organic molecule for self-assembled monolayer (SAM) to increase the adhesion between the plastic substrate and gate insulator and the mobility with surface treatment, high-performance transistor with field effect mobility $.66\;cm^2$/V s and $I_{on}/I_{off}$>$10^5$ was formed on the plastic substrate. This technique will be applicable to all structure deposited at low temperature and suitable for an easy process for flexible display.

  • PDF

The Analysis of Home Management by the Life Style Types among Housewives (생활양식유형에 따른 가정관리행동의 분석 -서울지역 아파트 거주 주부를 중심으로-)

  • 문숙재
    • Journal of the Korean Home Economics Association
    • /
    • v.25 no.2
    • /
    • pp.89-107
    • /
    • 1987
  • This study aimed at providing basis data to understand homemanagement by patterning of the life styles of housewives and by analysing the disposition of homemanagement behavior and characterstics of the behavior pattern to the difference of the life style patterns of housewives. The result can be summarized as follows: 1. By utilizing factor analysis and cluster analysis, the life style types of housewives were classified into 4 types, namely, self-fulness type (28.4%), negative stagnation type (22.7%), fashion-convenience type (23.3%), innovation-urging type (25.6%). 2. The life style types of housewives which were classified, differed significantly according to all of the demographic variables except family size variable. 3. The disposition of homemanagement behavior which were classified into inner-directed type and other-directed type, differed significantly according to the husband's age variable. 4. The patterns of homemanagement behavior which were classified into market pattern and service pattern, differed significantly according to the all of the demographic variables. 5. The disposition and the pattern of homemanagement behavior differed significantly according to the life style types of housewives.

  • PDF