• 제목/요약/키워드: Self-Organizing Feature Map (SOFM)

검색결과 58건 처리시간 0.027초

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.233-237
    • /
    • 1993
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 cluster로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사사에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means 클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해, 먼저, 우리말 음소들을 모음, 파열음, 마찰음, 파찰음, 유음 및 비음, 종성의 6개 음소군으로 분류하고 각 음소군에 대한 특징 지도를 구성하여 labeler의 기능을 수행하게 하였다. 화자 종속 인식실험 결과 87.2%의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

신경망을 이용한 저비트율 영상코딩 (Low Sit Rate Image Coding using Neural Network)

  • 정연길;최승규;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.579-582
    • /
    • 2001
  • 벡터변형은 벡터 양자화(VQ)와 부호화를 통합한 새로운 방법이다. 최근까지 부호화에 적용된 코드북 생성은 LBG 알고리즘이었으나 신경회로망을 기반으로 한 자기생성 특성맵(SOFM: Self Organizing Feature Map)의 장점을 이용하면 시스템의 성능을 개선할 수 있다는 점에 착안하였다. 본 논문에서는 SOFM 알고리즘을 적용한 VTC(Vector Transformation coding)코드북 생성과 LBG 알고리즘의 부호화률에 대한 결과를 비교하여 분석하였다. 벡터 양자화의 문제점은 계산의 복잡성과 코드북 생성에 있으므로 본 연구에서는 이 문제의 해결을 위해 신경망 접근법을 제안한다.

  • PDF

SOFM 신경회로망을 이용한 한국어 음소 인식 (Korean Phoneme Recognition Using Self-Organizing Feature Map)

  • 전용구;양진우;김순협
    • 한국음향학회지
    • /
    • 제14권2호
    • /
    • pp.101-112
    • /
    • 1995
  • 본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 클러스터러(clusterer)로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사상(local topographical mapping)에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해 먼저, 인식 대상음소는 모음군 17개, 자음의 경우 파열음9개, 마찰음 3개, 파찰음 3개, 유음 및 비음 4개, 음소의 성질이 다른 종성 7개의 음소군으로 모두 43개의 음소를 대상으로 실험하였으며, 각 음소군에 대한 특징 지도를 구성하여 레이블러(labeler)의 기능을 수행하게 하였다. 화자 종속 인식 실험 결과 $87.2\%$의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.

  • PDF

자기 분열 및 구조화 신경 회로망 (A self creating and organizing neural network)

  • 최두일;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.768-772
    • /
    • 1991
  • The Self Creating and organizing (SCO) is a new architecture and one of the unsupervized learning algorithm for the artificial neural network. SCO begins with only one output node which has a sufficiently wide response range, and the response ranges of all the nodes decrease with time. Self Creating and Organizing Neural Network (SCONN) decides automatically whether adapting the weights of existing node or creating a new node. It is compared to the Kohonen's Self Organizing Feature Map (SOFM). The results show that SCONN has lots of advantages over other competitive learning architecture.

  • PDF

자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬 (Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization)

  • 양보석;서상윤;임동수;이수종
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

적응적 자기 조직화 형상지도 (Adaptive Self Organizing Feature Map)

  • 이형준;김순협
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.83-90
    • /
    • 1994
  • 본 논문에서는 코호넨(Kohonen)의 SOFM (Self-Organizing Feature Map) 알고리즘의 단점을 해결하기 위한 새로운 학습 알고리즘 ASOFM(Adaptive Self-Organized Feature Map)을 제안한다. 코호넨의 학습 알고리즘은 초기화된 연결 벡터에 대하여 극소점에 빠지는 경우도 있다. 그러나 제안된 알고리즘에서는 학습과정중에 네트워크의 상태를 평가할 수 있는 목적함수(object function)을 사용하였고, 이 함수의 출력에 따라 학습의 각 시점에서 적응적으로 학습률의 재조정이 가능하였다. 이 결과, 네트워크의 상태가 최소점에 수렴함이 보증 되고 학습률의 적응성에 의해 임의의 학습패턴에 대한 학습의 일반화 능력이 보장되었다. 또한 제안된 알고리즘은 코호넨의 알고리즘보다 약 $70\%$이상의 학습시간을 단축한다.

  • PDF

일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구 (A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화 (Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts)

  • 박안진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권9호
    • /
    • pp.572-587
    • /
    • 2008
  • SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

자기조직화 특징지도를 이용한 회전기계의 이상진동진단 (Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map)

  • 서상윤;임동수;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF