• Title/Summary/Keyword: Self-Optimization Network

Search Result 75, Processing Time 0.031 seconds

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • Park Ho-Sung;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

Scatternet Formation Algorithm based on Relative Neighborhood Graph

  • Cho, Chung-Ho;Son, Dong-Cheul;Kim, Chang-Suk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2008
  • This paper proposes a scatternet topology formation, self-healing, and self-routing path optimization algorithm based on Relative Neighborhood Graph. The performance of the algorithm using ns-2 and extensible Bluetooth simulator called blueware shows that even though RNG-FHR does not have superior performance, it is simpler and easier to implement in deploying the Ad-Hoc network in the distributed dynamic environments due to the exchange of fewer messages and the only dependency on local information. We realize that our proposed algorithm is more practicable in a reasonable size network than in a large scale.

Effects of a Self-Care Reinforcement Program for Socially Vulnerable Elderly Women with Metabolic Syndrome in Korea

  • Park, Mikyung;Sung, Kiwol
    • Research in Community and Public Health Nursing
    • /
    • v.30 no.3
    • /
    • pp.271-280
    • /
    • 2019
  • Purpose: This study evaluates the efficacy of a Self-Care Reinforcement Program (SCRP) based on the Selection Optimization Compensation (SOC) model, in socially vulnerable elderly women with metabolic syndrome. Methods: This study adopts a pretest-posttest nonequivalent control group design. The participants were 64 socially vulnerable elderly Korean women with metabolic syndrome (experimental group: 31, control group: 33). Participants' body composition analysis, nutrient intake, risk factors of metabolic syndrome, depressive symptoms, and social network were measured. Data were analyzed with an independent t-test; statistical significance levels were set at p<.05. The SCRP, including metabolic syndrome education, nutritional education, exercise, and social network, was performed three times a week for 8 weeks. Results: There were statistically significant differences between the experimental and control groups in terms of systolic blood pressure, diastolic pressure, fasting blood sugar, triglycerides, sodium intake, depressive symptoms, and social networks. Conclusion: The SCRP is effective and can be recommended as a community health nursing intervention for socially vulnerable elderly women with metabolic syndrome.

Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System (로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법)

  • Dong Hyun Park;Hee-deok Jang;Dong Eui Chang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

A New design of Self Organizing Fuzzy Polynomial Neural Network Based on Evolutionary parameter identification (진화론적 파라미터 동정에 기반한 자기구성 퍼지 다항식 뉴럴 네트워크의 새로운 설계)

  • Park, Ho-Sung;Lee, Young-Il;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2891-2893
    • /
    • 2005
  • In this paper, we introduce a new category of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multi-layer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. The conventional SOFPNN algorithm leads to a tendency to produce overly complex networks as well as a repetitive computation load by the trial and error method and/or the a repetitive parameter adjustment by designer. In order to generate a structurally and parametrically optimized network, such parameters need to be optimal. In this study, in solving the problems with the conventional SOFPNN, we introduce a new design approach of evolutionary optimized SOFPNN. Optimal parameters design available within FPN (viz. the no. of input variables, the order of the polynomial, input variables, and the no. of membership function) lead to structurally and parametrically optimized network which is more flexible as well as simpler architecture than the conventional SOFPNN. In addition, we determine the initial apexes of membership functions by genetic algorithm.

  • PDF

Handover in LTE networks with proactive multiple preparation approach and adaptive parameters using fuzzy logic control

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin M;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2389-2413
    • /
    • 2015
  • High data rates in long-term evolution (LTE) networks can affect the mobility of networks and their performance. The speed and motion of user equipment (UE) can compromise seamless connectivity. However, a proper handover (HO) decision can maintain quality of service (QoS) and increase system throughput. While this may lead to an increase in complexity and operational costs, self-optimization can enhance network performance by improving resource utilization and user experience and by reducing operational and capital expenditure. In this study, we propose the self-optimization of HO parameters based on fuzzy logic control (FLC) and multiple preparation (MP), which we name FuzAMP. Fuzzy logic control can be used to control self-optimized HO parameters, such as the HO margin and time-to-trigger (TTT) based on multiple criteria, viz HO ping pong (HOPP), HO failure (HOF) and UE speeds. A MP approach is adopted to overcome the hard HO (HHO) drawbacks, such as the large delay and unreliable procedures caused by the break-before-make process. The results of this study show that the proposed method significantly reduces HOF, HOPP, and packet loss ratio (PLR) at various UE speeds compared to the HHO and the enhanced weighted performance HO parameter optimization (EWPHPO) algorithms.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.

Ant-based Routing in Wireless Sensor Networks (개미 시스템을 이용한 무선 센서 네트워크 라우팅 알고리즘 개발)

  • Ok, Chang-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.53-69
    • /
    • 2010
  • This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.

Location Optimization for a Wireless Sensor Network Nodes Using a SOFM(Self-Organization Feature Map) Algorithm (SOFM을 이용한 센서 네트워크 노드 배치의 최적화)

  • Jung, Kyung-Kwon;Bae, Sang-Min;Kim, Keon-Wook;Park, Hyun-Chang
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.345-348
    • /
    • 2005
  • 본 논문은 무선 센서 네트워크에서 SOFM을 이용하여 센서 노드를 배치하는 방법을 제안한다. 제안한 방식은 특정 공간에서 센서 노드의 밀도가 일정하도록 SOFM을 이용하여 센서 노드를 배치시킨다. 시뮬레이션으로 최적의 위치를 탐색하고, 그 위치에 무선 센서 노드를 설치하여 제안한 방식의 성능을 검토하였다.

  • PDF