• Title/Summary/Keyword: Self-Driven Switch

Search Result 12, Processing Time 0.081 seconds

Study of a SEPIC-input Self-driven Active Clamp ZVS Converter

  • Cao, Guo-En;Kim, Hee-Jun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.202-215
    • /
    • 2013
  • This paper proposes a SEPIC-input, self-driven, active clamp ZVS converter, where an auxiliary winding and a RC delay circuit are employed to drive the active clamp switch and to achieve asymmetrical duty control without any other extra circuits. Based on the fixed dead time and the resonance between capacitors and inductors, both the main switch and the auxiliary switch can rule the ZVS operation. Detailed operation modes are presented to illustrate the self-driven and ZVS principles. Furthermore, an accurate state-space model and the transfer functions of the proposed converter have been presented and analyzed in order to optimize dynamic performance. The model provides efficient prediction of converter operations. Experimental results, based on a prototype with 80V input and 15V/20A output, are discussed to verify the transient and steady performance of the proposed converter.

Non-Isolation, High-Efficiency and High-Voltage-Output DC-DC Converter using the Self-Driven Synchronous Switch (자기구동 동기스위치를 이용한 비절연 고효율 고전압출력 DC-DC 컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.962-970
    • /
    • 2019
  • In this paper, the non-isolation, high-efficiency and high-voltage-output DC-DC converter using the self-driven synchronous switch is proposed. The proposed converter achieves high-voltage-output by applying a tapped inductor to the conventional boost DC-DC converter structure, and it reduces the voltage stress of main switch applying the lossless capacitor-diode (LCD) snubber to the switch. And the proposed converter applies the synchronous switch instead of the diode to the output part, and thus it resolves the reverse recovery problem and achieves high-efficiency. The synchronous switch of proposed converter uses the self-driven method and has a simple structure. In this paper, the operation principle of proposed converter is explained, and then, a design example of the converter prototype is presented. And the characteristics of the proposed converter are shown through experimental results of the prototype made with the designed circuit parameters.

A Study on a Boost-Input Self-Driven Active Clamp ZVS Converter (자기구동 능동 클램프를 이용한 부스트 입력형 ZVS 컨버터에 관한 연구)

  • Jin, Ho-Sang;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.781-788
    • /
    • 2011
  • This paper proposes a boost-input self-driven active clamp ZVS converter eliminating the extra dirve circuit for the active clamp switch. The converter used the auxiliary winding of the transformer to drive the active clamp switch and to achieve asymmetrical duty control. This paper presents the operation principle and the analyzed results of dynamic characteristics including steady state characteristics of the converter proposed. The experimental results were used to verify the theoretical predictions. A 300W (15V/20A) prototype converter that only exhibited 2-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input voltage of 80V. Finally, the maximum efficiency of 91.2% was achieved for the prototype converter and the proposed converter had stable closed loop characteristic with phase margin $55^{\circ}$.

A Study on Synchronous Rectification of Push-Pull Converter for Efficiency Improvement (효율개선을 위한 Push-Pull Converter의 동기정류에 관한 연구)

  • 김영규;김동중;김이훈;원충연;김규식;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.134-141
    • /
    • 2004
  • This paper presents a method of synchronous rectifier(SR) for improving the efficiency in DC/DC converter. The proposed method is used push-pull topology on primary as a single winding self driven synchronous rectification(SWSDSR). Specially, this method can improve efficiency to turn on SR switch during dead time. Finally, the simulation and experimental results will be given to show comparison and analysis on the efficiency between self driven synchronous rectification(SDSR) and SWSDSR method.

A Self-Driven Active Clamp Forward Converter Using the Auxiliary Winding of the Power Transformer (변압기 보조권선을 이용한 자기 구동 능동 클램프 포워드 컨버터)

  • 이광운;임범선;김희준
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.350-354
    • /
    • 2003
  • This study proposes a new self-driven active clamp forward converter eliminating the extra drive circuit for the active clamp switch. The converter used the auxiliary winding of the power transformer to drive the active clamp switch and a simple R-C circuit to get the dead time between the two switches. The operation principle was presented and experimental results were used to verify theoretical predictions. A 100-W (5V/20A) prototype converter built that only exhibited 1.5-turn winding number in the auxiliary winding was sufficient to drive the active clamp switch on the input of 50V. Finally, the measured efficiency of the converter was presented and the maximum efficiency of 91% was obtained.

Large-Signal Transient Analysis of a Self-Driven Active-Clamp Forward Converter (자기 구동 능동 클램프 포워드 컨버터의 대신호 과도 특성 해석)

  • Bong Sang-Cheol;Kim Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1235-1238
    • /
    • 2004
  • This paper presents the large-signal transient analysis of a self-driven active-clamp forward converter, eliminating the extra drive circuit for the active clamp switch. The operation principle of the converter was presented and experiential results were used to verify the analyzed results. A 50-W prototype converter built and tested it. From the tested results, input transient response and load transient response of the converter were established.

  • PDF

Analysis of the Isolated Boost Converter Using Self-Driven Switch (자기구동 스위치를 이용한 절연된 부스트 변환기의 해석)

  • Hong, Soon-Chan;Chae, Soo-Yong;Chung, Dae-Taek;Kim, Hee-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.89-98
    • /
    • 2010
  • Isolated boost converter is desirable in the dc/dc converter applications where isolation is required and extremely high step up is needed. Transformer used to step up low input voltage into high output voltage must satisfy the volt-sec balance condition. Conventional isolated boost converter is controlled with conducting intervals overlapping. In this case, there is a problem that control circuit is complicated. In this paper, it is proposed and analyzed the isolated boost converter which set up a reset winding for the volt-sec balance of transformer and can construct the control circuit simple by using a self-driven switch. Finally, the validity of the theoretical analyses for the proposed converter is verified by both simulations and experiments on the 10[W] class isolated boost converter.

High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment (LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF