• 제목/요약/키워드: Self-Centering Force

검색결과 35건 처리시간 0.023초

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.

긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구 (Structural Performance on the Self-centering Connections with Different Conditions of PT Strands)

  • 정미진;윤성기
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.73-80
    • /
    • 2017
  • 잔류변형이 효과적으로 제어되어 곧은 상태를 유지시켜주는 셀프센터링 접합부에 대하여 반복가력 해석을 시행했으며 초기 긴장력과 긴장재의 개수에 따른 구조적 거동을 분석하였다. 셀프센터링 효과를 발휘하기 위해서 초기 긴장력은 ㄱ형강의 항복모멘트보다 커야하며 주요부재의 손상을 최소화 하기 위해서 압축상쇄모멘트는 보의 전소성모멘트의 0.35이하로 하는 것이 타당하다고 판단된다. 또한 긴장재 개수가 증가할수록 단일 긴장재에 작용하는 초기 긴장력이 감소하여 셀프센터링 성능을 확보할 수 있으므로 긴장재의 초기 긴장응력은 항복응력의 75% 이하로 하는 것을 제안하였다.

Seismic response analysis of RC frame core-tube building with self-centering braces

  • Xu, Long-He;Xiao, Shui-Jing;Lu, Xiao
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.189-204
    • /
    • 2018
  • This paper examines the seismic responses of a reinforced concrete (RC) frame core-tube building with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The PS-SCED brace system consists of friction devices for energy dissipation, pre-pressed combination disc springs for self-centering and tube members as guiding elements. A constitutive model of self-centering flag-shaped hysteresis for PS-SCED brace is developed to better simulate the seismic responses of the RC frame core-tube building with PS-SCED braces, which is also verified by the tests of two braces under low cyclic reversed loading. Results indicate that the self-centering and energy dissipation capabilities are well predicted by the proposed constitutive model of the PS-SCED brace. The structure with PS-SCED braces presents similar peak story drift ratio, smaller peak acceleration, smaller base shear force and much smaller residual deformations as compared to the RC frame core-tube building with bucking-restrained braces (BRBs).

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Performance evaluation of a rocking steel column base equipped with asymmetrical resistance friction damper

  • Chung, Yu-Lin;Du, Li-Jyun;Pan, Huang-Hsing
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.49-61
    • /
    • 2019
  • A novel asymmetrical resistance friction damper (ARFD) was proposed in this study to be applied on a rocking column base. The damper comprises multiple steel plates and was fastened using high-strength bolts. The sliding surfaces can be switched into one another and can cause strength to be higher in the loading direction than in the unloading direction. By combining the asymmetrical resistance with the restoring resistance that is generated due to an axial load on the column, the rocking column base can develop a self-centering behavior and achieve high connection strength. Cyclic tests on the ARFD proved that the damper performs a stable asymmetrical hysteretic loop. The desired hysteretic behavior was achieved by tuning the bolt pretension force and the diameter of the round bolt hole. In this study, full-scale, flexural tests were conducted to evaluate the performance of the column base and to verify the analytical model. The results indicated that the column base exhibits a stable self-centering behavior up to a drift angle of 4%. The decompression moment and maximum strength reached 42% and 88% of the full plastic moment of the section, respectively, under a column axial force ratio of approximately 0.2. The strengths and self-centering capacity can be obtained by determining the bolt pretension force. The analytical model results revealed good agreement with the experimental results.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

셀프센터링 가새골조의 지진응답 (Seismic Response of Self-Centering Energy Dissipative Braced Frames)

  • 최현훈;;김진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.331-336
    • /
    • 2008
  • An self-centering energy-dissipative (SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy, such as the buckling restrained brace system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In this study seismic performance of SCED braced frames is evaluated for a set of 20 design level earthquake records. According to analysis results the SCED systems showed more uniform interstory drift demand for buildings with 8 story or fewer. The residual deformation in SCED buildings turned out to be much less than that of moment-resisting frames.

  • PDF

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.