• Title/Summary/Keyword: Self-Adaptive Systems

Search Result 177, Processing Time 0.027 seconds

Self-adaptive sampling for sequential surrogate modeling of time-consuming finite element analysis

  • Jin, Seung-Seop;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.611-629
    • /
    • 2016
  • This study presents a new approach of surrogate modeling for time-consuming finite element analysis. A surrogate model is widely used to reduce the computational cost under an iterative computational analysis. Although a variety of the methods have been widely investigated, there are still difficulties in surrogate modeling from a practical point of view: (1) How to derive optimal design of experiments (i.e., the number of training samples and their locations); and (2) diagnostics of the surrogate model. To overcome these difficulties, we propose a sequential surrogate modeling based on Gaussian process model (GPM) with self-adaptive sampling. The proposed approach not only enables further sampling to make GPM more accurate, but also evaluates the model adequacy within a sequential framework. The applicability of the proposed approach is first demonstrated by using mathematical test functions. Then, it is applied as a substitute of the iterative finite element analysis to Monte Carlo simulation for a response uncertainty analysis under correlated input uncertainties. In all numerical studies, it is successful to build GPM automatically with the minimal user intervention. The proposed approach can be customized for the various response surfaces and help a less experienced user save his/her efforts.

Adaptive Firefly Algorithm based OPF for AC/DC Systems

  • Babu, B. Suresh;Palaniswami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.791-800
    • /
    • 2016
  • Optimal Power Flow (OPF) is an important operational and planning problem in minimizing the chosen objective functions of the power systems. The recent developments in power electronics have enabled introduction of dc links in the AC power systems with a view of making the operation more flexible, secure and economical. This paper formulates a new OPF to embrace dc link equations and presents a heuristic optimization technique, inspired by the behavior of fireflies, for solving the problem. The solution process involves AC/DC power flow and uses a self adaptive technique so as to avoid landing at the suboptimal solutions. It presents simulation results of IEEE test systems with a view of demonstrating its effectiveness.

Design of Self Tuning Type Servo Controller for Systems with Known Dusturbance (기지 외란을 가진 시스템의 자기동조형 서보 제어기 설계)

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Yeu, Tae-Kyoung;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.739-744
    • /
    • 2000
  • A robust control algorithm under disturbance and reference change is developed using a self tuning control method incorporting of the well known internal model principle and the annihilator polynomical. The types of disturbance and reference signal are assumed to be given as known difference polynomials. The algorithm is shown for a minimum phase system with parameters of unknown parameters.

  • PDF

Self-tuning control with bounded input constraints

  • Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1655-1658
    • /
    • 1991
  • This paper considers the design and analysis of one-step ahead optimal and adaptive controllers, under the restriction that a known constraint on the input amplitude is imposed. It is assumed that the discrete-time single-input, single-output system to be controlled is linear, except for inequality constraints on the input. The objective function to be minimized is an one-step quadratic function, where polynomial weights on the input and output are included. Both the known parameter and unknown parameter (indirect adaptive controller) cases are examined.

  • PDF

Control of induction motors using adaptive fuzzy feedback linearization techniques (적응 퍼지 궤환선형화기법을 이용한 유도전동기의 제어)

  • 류지수;김정중;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1253-1256
    • /
    • 1996
  • In this paper, a new nonlinear feedback linearization control scheme for induction motors is developed. The control scheme employs a fuzzy nonlinear identification scheme based on fuzzy basis function expansion to adoptively compensate the parameter variations, i.e. rotor resistance, mutual and self inductance etc. An important feature of the proposed control scheme is to incorporate the sliding mode controller into the scheme to speed up convergence rate. Simulation tests show the robust behavior of the proposed controller in the presence of the parameter uncertainties of the machine.

  • PDF

Offset elimination in adaptive control (적응제어에서의 오프셋 영향 제거)

  • 최두환;김영철;양홍식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.236-241
    • /
    • 1988
  • This note considers the class of controllers with integral action which arise directly from appropriate system models. Via internal model principle approach, a corresponding class of self-tuning controller is shown to have both integral action in controller and offset removal in the tuning algorithm. The key idea is to constrain the estimator in each step in order to ensure that dc gain of feedforward and feedback polynomial of adaptive controller are always equal, thus allowing the loop integrator to work properly.

  • PDF

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Adolescents' Self-control and Big Five Personality Types Affecting Maladaptive and Adaptive Computer Game Use State (청소년의 Big Five 성격 유형과 자기 조절 성향이 게임 과용, 선용 행태에 미치는 영향)

  • Kim, YoungBerm;Lee, SangHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.4
    • /
    • pp.65-77
    • /
    • 2019
  • Adolescents reach the game-use states of adaptive and maladaptive by the absorption to computer game. Authors claimed that the two states are commonly related with the time of game-use, and the degree of them are distinctive according to adolescent individuals, specifically their self-control propensity. Authors proposed a conceptual research model that Big Five personality types predict their self-control which moderates the relationships from game use-time to the maladaptive and adaptive states. The data to test its validity and reliability had been sampled 999 Korean students in elementary school, middle school, and high school. Resultingly, the openness and conscientiousness of the adolescents affected positively on the self-control, which moderated negatively the relationship from the game use time to the maladaptive use state, but the positive moderation on the relationships from game use time to adpative state was not significant. These results mean that we could apply teenager's Big Five personality type and their self-control traits as a tool for preventing teens from the overuse state like addiction.

Adaptive Fuzzy Logic Control for Sight Stabilization System (조준경 안정화 장치의 적응 퍼지 논리 제어)

  • 소상호;김도종;박동조;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.63-66
    • /
    • 1997
  • The rule bases self organizing controller(SOC) has one of its main advantages in the fact that there is no need to have a mathematical description of the system to be controlled. In this controller, the rules are linguistics statements expressed mathematically through the concepts of fuzzy sets and correspond to the actions a human operator would take when controlling a given process. With this controller, we have performed to sight stabilization system, and we realize that it needs a scale factor tuning. The self tuning controller(STC) uses an instantaneous system fuzzy performance which can give an inspection to the scale factor. Therefore, the STC can compensate the scale factor when it is not adequately tuned. With this trial, we shows that STC can give a good transient characteristics in the nonlinearity which imposed basically in the conventional servo system.

  • PDF