• Title/Summary/Keyword: Self- Supervised Learning

Search Result 98, Processing Time 0.035 seconds

A Neural Net System Self-organizing the Distributed Concepts for Speech Recognition (음성인식을 위한 분산개념을 자율조직하는 신경회로망시스템)

  • Kim, Sung-Suk;Lee, Tai-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 1989
  • In this paper, we propose a neural net system for speech recognition, which is composed of two neural networks. Firstly the self-supervised BP(Back Propagation) network generates the distributed concept corresponding to the activity pattern in the hidden units. And then the self-organizing neural network forms a concept map which directly displays the similarity relations between concepts. By doing the above, the difficulty in learning the conventional BP network is solved and the weak side of BP falling into a pattern matcher is gone, while the strong point of generating the various internal representations is used. And we have obtained the concept map which is more orderly than the Kohonen's SOFM. The proposed neural net system needs not any special preprocessing and has a self-learning ability.

  • PDF

Learning Unified and Robust Representations across Various Tasks within a Federated Learning Environment (연합 학습 환경에서 통합되고 강인한 다중 작업 학습 기법)

  • Ankit Kumar Singh;Subeen Choi;Bong Jun Choi
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.798-800
    • /
    • 2024
  • 현대의 머신러닝 환경에서는 특히 모바일 컴퓨팅 및 사물 인터넷(IoT)의 애플리케이션 영역에서 개인 정보를 보호하고 효율적이며 확장 가능한 모델에 대한 관심이 높아지고 있다. 본 연구는 연합 학습(FL)과 자기지도 학습(self-supervised learning)을 결합하여 이질적(heterogeneous)인 분산 자원에서 레이블이 없는 데이터를 활용하면서 사용자의 개인 정보를 보호하는 새로운 프레임워크를 소개한다. 이 프레임워크의 핵심은 SimCLR 과 같은 자기지도 학습 기법으로 학습된 공유 인코더로, 입력 데이터에서 고수준 특성을 추출하도록 설계되었다. 또한 이 구조를 통해 주석(annotation)이 없는 방대한 데이터셋을 활용하여 모델 성능을 향상시키고, 여러 개의 격리된 모델이 필요하지 않아 리소스를 크게 최적화할 수 있는 가능성을 확인했다. 본 연구를 통해 생성된 모델은 중앙 집중 방식(CL)이면서 자기지도학습으로 학습되지 않은 기존 모델과 비교하여 전체 평균 정확도가 14.488% 향상됐다.

TCN-USAD for Anomaly Power Detection (이상 전력 탐지를 위한 TCN-USAD)

  • Hyeonseok Jin;Kyungbaek Kim
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the increase in energy consumption, and eco-friendly policies, there is a need for efficient energy consumption in buildings. Anomaly power detection based on deep learning are being used. Because of the difficulty in collecting anomaly data, anomaly detection is performed using reconstruction error with a Recurrent Neural Network(RNN) based autoencoder. However, there are some limitations such as the long time required to fully learn temporal features and its sensitivity to noise in the train data. To overcome these limitations, this paper proposes the TCN-USAD, combined with Temporal Convolution Network(TCN) and UnSupervised Anomaly Detection for multivariate data(USAD). The proposed model using TCN-based autoencoder and the USAD structure, which uses two decoders and adversarial training, to quickly learn temporal features and enable robust anomaly detection. To validate the performance of TCN-USAD, comparative experiments were performed using two building energy datasets. The results showed that the TCN-based autoencoder can perform faster and better reconstruction than RNN-based autoencoder. Furthermore, TCN-USAD achieved 20% improved F1-Score over other anomaly detection models, demonstrating excellent anomaly detection performance.

Tool Breakage Detection in Face Milling Using a Self Organized Neural Network (자기구성 신경회로망을 이용한 면삭밀링에서의 공구파단검출)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1939-1951
    • /
    • 1994
  • This study introduces a new tool breakage detecting technology comprised of an unsupervised neural network combined with adaptive time series autoregressive(AR) model where parameters are estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(Recursive Least Square). Experiment indicates that AR parameters are good features for tool breakage, therefore it can be detected by tracking the evolution of the AR parameters during milling process. an ART 2(Adaptive Resonance Theory 2) neural network is used for clustering of tool states using these parameters and the network is capable of self organizing without supervised learning. This system operates successfully under the wide range of cutting conditions without a priori knowledge of the process, with fast monitoring time.

Unsupervised Learning with Natural Low-light Image Enhancement (자연스러운 저조도 영상 개선을 위한 비지도 학습)

  • Lee, Hunsang;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Recently, deep-learning based methods for low-light image enhancement accomplish great success through supervised learning. However, they still suffer from the lack of sufficient training data due to difficulty of obtaining a large amount of low-/normal-light image pairs in real environments. In this paper, we propose an unsupervised learning approach for single low-light image enhancement using the bright channel prior (BCP), which gives the constraint that the brightest pixel in a small patch is likely to be close to 1. With this prior, pseudo ground-truth is first generated to establish an unsupervised loss function. The proposed enhancement network is then trained using the proposed unsupervised loss function. To the best of our knowledge, this is the first attempt that performs a low-light image enhancement through unsupervised learning. In addition, we introduce a self-attention map for preserving image details and naturalness in the enhanced result. We validate the proposed method on various public datasets, demonstrating that our method achieves competitive performance over state-of-the-arts.

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Word sense disambiguation using modular neural networks (모듈화된 신경망을 이용한 한국어 중의성 해결 시스템)

  • Han, Tae-Sik;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.39-42
    • /
    • 1995
  • 문장 안에서 한 단어가 가지는 올바른 의미를 얻기 위해 모듈화된 신경망을 이용하였다. 앞부분에 놓인 신경망은 코호넨 신경망으로 사용자의 지도가 개입되지 않은 상태로 자율학습(Unsupervised learning)이 이루어지고, 뒤에 놓인 신경망은 앞에서 결과로 얻은 2차원의 자기 조직화 형상지도(Self-organizing feature map)를 바탕으로 역전파 신경망을 이용한 지도학습(Supervised learning)을 하게 하였다. 입력 자료는 구문분석된 문장의 조사 정보를 활용하여 입력 위치를 정해준 명사의 의미표지와 동사의 의미표지를 사용하였다. 중의성이 있는 단어를 가지는 문장은 중의성의 가지수 만큼 테스트 입력 자료가 되어 신경망을 통과하여 의미를 결정하도록 한다.

  • PDF

Molecular Property Prediction with Deep-learning and Pretraining Strategy (사전학습 전략과 딥러닝을 활용한 분자의 특성 예측)

  • Lee, Seungbeom;Kim, Jiye;Kim, Dongwoo;Park, Jaesik;Ahn, Sungsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.