• 제목/요약/키워드: Self Powered Device

검색결과 49건 처리시간 0.208초

자가발전활용을 위한 마찰전기 나노발전소자의 제작 (Fabrication of triboelectric nanogenerator for self-sufficient power source application)

  • 신소윤;김상재;발라스브라마니안 사라판구말
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

커패시터 기반 자가발전 인공 신경망 디바이스 설계 (The design of capacitor-based self-powered artificial neural networks devices)

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.361-367
    • /
    • 2020
  • 본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

압전 재료를 이용한 에너지 변환 시스템의 출력 파워 예측 및 평가 (Prediction and Evaluation of Power Output for Energy Scavengers using the Piezoelectric Material)

  • 오재응;김성현;심현진;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.827-830
    • /
    • 2006
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. In the generality of cases, these energy harvesting systems are used in the piezoelectric materials as mechanisms to convert mechanical vibration energy into electric energy. Through the piezoelectric materials, the ambient vibration energy could be used to prolong the power supply or in the ideal case provide endless energy f9r the devices. Therefore, the piezoelectric power harvesting cantilever beam is developed. Also, the output voltage and power are predicted in this study. We also discuss the developing system of the piezoelectric energy scavenger. An experimental verification of the model is also performed to ensure its accuracy.

  • PDF

31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구 (Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device)

  • 김인성;주현규;정순종;김민수;송재성;전소현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF

PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성 (Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area)

  • 김인성;주현규;송재성;김민수;정순종;이대수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

압전에너지 수확을 위한 AC/DC 공진형 자려 부스트 컨버터 (AC/DC Resonant Piezo-Powered Boost Converter for Piezoelectric Energy Harvesting)

  • 김혁진;정교범
    • 전력전자학회논문지
    • /
    • 제14권6호
    • /
    • pp.488-495
    • /
    • 2009
  • 본 논문은 기계적 에너지를 전기에너지로 변환하는 압전소자를 이용한 에너지 수확 시스템 내에서 전력변환을 수행하는 새로운 AC/DC 공진형 자려(自勵) 부스트 컨버터를 제안한다. AC/DC 공진형 자려 부스트 컨버터의 자려 스위칭을 위한 게이트 회로는, MOSFET 특성을 이용하여 압전소자 출력전압의 최대값을 검출하고 LC 공진회로의 특성을 이용하여 영전압 스위칭을 하며, 승압형 전력변환을 수행하기 위해서 별도의 전원을 필요로 하지 않는다. 제안된 컨버터 회로의 동작원리를 설명하고, 기존 연구 개발된 토폴로지와 비교, PSPICE 시뮬레이션 및 실험을 통하여 유용성을 검증한다.

3-1 타입 트리모프 캔틸레버의 마이크로발전 응용기술 개발 (Development of Application Technique for 3-1 Type Triple-morph Cantilever)

  • 김인성;주현규;정순종;김민수;송재성;전소현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1303_1304
    • /
    • 2009
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31type triple-morph cantilever was resulted from the conditions of $100k{\Omega}$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of 6.57Vrms, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$. And than, the fabricated piezoelectric cantilever was packaged for application.

  • PDF

회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈 (Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices)

  • 김창일;여서영;박범근;정영훈;백종후
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

오존발생시스템을 이용한 하천수질 개선기법 (Techniques of Water Quality Improvement by Using Ozone Generation System)

  • 김민영;류재욱;이승윤;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2122-2126
    • /
    • 2008
  • With the degradation of water quality and, at the same time increased water usage, the sources of high quality, for examples, river/stream, municipal reservoir, wells, artisan and surface water, are diminishing. Therefore, the importance of water quality has been emphasized over the years through publications and various literature sources. Even though considerable research has resulted in significant strides for providing interpretive information and mitigation strategies for improvement of waters, the quality of which is still questionable. This study aims to propose a completely independent self-contained system for purifying waters, solar-powered ozone generator. It is a semi-permanent and cost effective environmental solution. Functions of ozone treatment are: 1) to maintain oxidative flexibility, 2) remove harmful chemicals, wastes, and other substances, and 3) prevent epizootic microbial outbreaks. Recent advances in technology have allowed the development of the practical, self-contained and independent solar powered device. Solar electrical producing panels that charge batteries are the key to using these systems anywhere electrical power is not available. This paper invites the readers to examine the problem and consider the viable, proven solution the solar powered ozone purifying system. This paper also introduces basic concept and background of solar powered ozone generators and examine its feasibility for improving water quality in rivers and streams.

  • PDF