• 제목/요약/키워드: Self Organizing Maps

검색결과 97건 처리시간 0.023초

확률적 자율 학습을 위한 베이지안 모델 (Bayesian Model for Probabilistic Unsupervised Learning)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.849-854
    • /
    • 2001
  • Bishop이 제안한 Generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률 버전이다. GTM은 데이터가 생성되는 확률 분포를 잠재 변수, 혹은 은닉 변수를 사용하여 모형화한다. 이것은 SOM에서는 구현될 수 없는 GTM만의 특징이며, 이러한 특징으로 인하여 SOM의 한계들을 극복할 수 있게 된다. 본 논문에서는 이러한 GTM 모형에 베이지안 학습(Bayesian learning)을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 알고리즘은 기존의 GTM의 빠른 계산 처리 능력과 데이터에 대한 확률 분포, 그리고 베이지안 추론의 정확성을 이용하여 기존의 분류 알고리즘보다 우수한 결과를 얻게 된다. 본 논문에서는 기존의 분류 알고리즘에서 많이 실험하였다. 학습 데이터를 통하여 이를 확인하였다.

  • PDF

PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식 (Passport Recognition using PCA-based Face Verification and SOM Algorithm)

  • 이상수;장도원;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

MCMC 결측치 대체와 주성분 산점도 기반의 SOM을 이용한 희소한 웹 데이터 분석 (Sparse Web Data Analysis Using MCMC Missing Value Imputation and PCA Plot-based SOM)

  • 전성해;오경환
    • 정보처리학회논문지D
    • /
    • 제10D권2호
    • /
    • pp.277-282
    • /
    • 2003
  • 웹으로부터 유용한 정보를 얻기 위한 연구는 현재 많이 진행되고 있다. 본 논문에서는 특히 웹 로그 데이터의 희소성에 대한 문제 해결과 이를 통한 웹 사용자의 군집화 방안에 대하여 연구하였다. MCMC 방법의 베이지안 추론에 의한 결측치 대체 기법을 이용하여 웹 데이터의 희소성을 제거하였고, 주성분에 의한 산점도를 통하여 형상지도의 차원을 결정한 자기 조직화지도를 이용하여 웹 사용자의 군집화를 수행하였다. 제안 기법은 기존의 방법들에 비해 모형의 정확도와 빠른 학습 시간을 제공하여 주었다. KDD Cup 데이터를 이용한 실험을 통하여 제안 방법에 대한 문제 해결 절차 및 성능 평가를 객관적으로 확인하였다.

전역경로계획을 위한 단경로 스트링에서 당기기와 밀어내기 SOFM을 이용한 방법의 비교 (The Comparison of Pulled- and Pushed-SOFM in Single String for Global Path Planning)

  • 차영엽;김곤우
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.451-455
    • /
    • 2009
  • This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.

로봇 메니퓰레이터 제어를 위한 개조된 자기조직화 신경망 개발 (Development of the Revised Self-Organizing Neural Network for Robot Manipulator Control)

  • 구태훈;이종태
    • 대한산업공학회지
    • /
    • 제25권3호
    • /
    • pp.382-392
    • /
    • 1999
  • Industrial robots have increased in both the number and applications in today's material handling systems. However, traditional approaches to robot controling have had limited success in complicated environment, especially for real time applications. One of the main reasons for this is that most traditional methods use a set of kinematic equations to figure out the physical environment of the robot. In this paper, a neural network model to solve robot manipulator's inverse kinematics problem is suggested. It is composed of two Self-Organizing Feature Maps by which the workspace of robot environment and the joint space of robot manipulator is inter-linked to enable the learning of the inverse kinematic relationship between workspace and joint space. The proposed model has been simulated with two robot manipulators, one, consisting of 2 links in 2-dimensional workspace and the other, consisting of 3 links in 2-dimensional workspace, and the performance has been tested by accuracy of the manipulator's positioning and the response time.

  • PDF

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

대규모 TSP과제를 효과적으로 해결할 수 있는 SOFM알고리듬 (An Efficient Algorithm based on Self-Organizing Feature Maps for Large Scale Traveling Salesman Problems)

  • 김선종;최흥문
    • 전자공학회논문지B
    • /
    • 제30B권8호
    • /
    • pp.64-70
    • /
    • 1993
  • This paper presents an efficient SOFM(self-organizing feature map) algorithm for the solution of the large scale TSPs(traveling salesman problems). Because no additional winner neuron for each city is created in the next competition, the proposed algorithm requires just only the N output neurons and 2N connections, which are fixed during the whole process, for N-city TSP, and it does not requires any extra algorithm of creation of deletion of the neurons. And due to direct exploitation of the output potential in adaptively controlling the neighborhood, the proposed algorithm can obtain higher convergence rate to the suboptimal solutions. Simulation results show about 30% faster convergence and better solution than the conventional algorithm for solving the 30-city TSP and even for the large scale of 1000-city TSPs.

  • PDF

대체공정이 있는 기계-부품 그룹의 형성 - 자기조직화 신경망을 이용한 해법 - (Machine-Part Grouping with Alternative Process Plan - An algorithm based on the self-organizing neural networks -)

  • 전용덕
    • 산업경영시스템학회지
    • /
    • 제39권3호
    • /
    • pp.83-89
    • /
    • 2016
  • The group formation problem of the machine and part is a critical issue in the planning stage of cellular manufacturing systems. The machine-part grouping with alternative process plans means to form machine-part groupings in which a part may be processed not only by a specific process but by many alternative processes. For this problem, this study presents an algorithm based on self organizing neural networks, so called SOM (Self Organizing feature Map). The SOM, a special type of neural networks is an intelligent tool for grouping machines and parts in group formation problem of the machine and part. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. In the proposed algorithm, output layer in SOM network had been set as one-dimensional structure and the number of output node has been set sufficiently large in order to spread out the input vectors in the order of similarity. In the first stage of the proposed algorithm, SOM has been applied twice to form an initial machine-process group. In the second stage, grouping efficacy is considered to transform the initial machine-process group into a final machine-process group and a final machine-part group. The proposed algorithm was tested on well-known machine-part grouping problems with alternative process plans. The results of this computational study demonstrate the superiority of the proposed algorithm. The proposed algorithm can be easily applied to the group formation problem compared to other meta-heuristic based algorithms. In addition, it can be used to solve large-scale group formation problems.

SOM에서 개체의 시각화 (Enhancing Visualization in Self-Organizing Maps)

  • 엄익현;허명회
    • 응용통계연구
    • /
    • 제18권1호
    • /
    • pp.83-98
    • /
    • 2005
  • 다변량 자료를 분석하는 데 있어서 관측 개체들의 분포적 양태를 파악하는 것은 자료 특성의 이해에 도움이 될 뿐만 아니라 이후 모형화 과정에도 큰 도움을 준다. 이를 위하여 다변량자료의 저차원 시각화에 대한 많은 연구가 진행되어 왔다. 그 중 하나가 코호넨(T. Kohonen)의 자기조직화지도(Self-Organizing Map; SOM)이다. SOM은 저차원 그리드 공간에 고차원 다변량 자료를 축약하여 시각적으로 나타내는 비지도 학습법의 일종으로 최근 들어 통계 분석자들이 많은 관심을 가지고 있는 분야이다. 그러나 SOM은 개체공간의 연속형으로 표현되는 개체를 저차원 그리드 공간에 승자노드에 의해 비연속적으로 표현한다는 단점을 지니고 있다. 본 논문에서는 SOM을 통계적 목적으로 사용하기 위해 요구되는 그리드 공간에 개체를 연속적으로 표현하는 방법들을 제안하고 환용 예를 제시 하고자 한다.

주성분 자기조직화 지도 PC-SOM (Principal Components Self-Organizing Map PC-SOM)

  • 허명회
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.321-333
    • /
    • 2003
  • 자기조직화 지도(SOM)은 T. 코호넨의 주도하에 개발된 비지도 학습 신경망 모형이다. 그 동안 패턴인식과 문서검색 분야에 주로 응용되어 왔기 때문에 통계학 분야에서는 덜 알려졌으나, 최근 K-평균 군집화에 대한 대안적 데이터 마이닝 기법으로 활용되기 시작하였다. 본 연구에서는 SOM의 한 버전인 PC-SOM(주성분 자기조직화 지도)을 제안하고 활용 예를 제시하고자 한다. PC-SOM은 1차원적 SOM 알고리즘을 반복 수행하여 2차원, 3차원 등의 SOM을 얻는 방법이기 때문에 기존 SOM과는 달리 사전 Map의 크기를 확정할 필요가 없다. 또한, 기존 SOM에 비하여 향상된 시각화를 가능하게 한다.