• Title/Summary/Keyword: Selective reset method

Search Result 2, Processing Time 0.016 seconds

Effect of Address Discharge Characteristics by Selective Reset Method in AC Plasma Display Panel (교류형 플라즈마 디스플레이에서 선택적 초기화 방법에 의한 기입 방전 특성의 영향)

  • Cho, Byung-Gwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1004-1008
    • /
    • 2012
  • The effect of address discharge characteristics by selective reset method is investigated to prevent the weakness of address discharge in the middle of a TV-field without increase of the black luminance. To reduce black luminance in AC PDP usually, the first subfield during one TV frame adopted the conventional rising ramp-reset waveform, whereas the other subfields adopted the subsidiary reset waveform without rising ramp type. As the wall charge for the address discharge was accumulated by only the rising ramp waveform during the first reset period, the wall charge on three electrodes was disappeared as time passed and the address discharge would be weakened in the rear subfields. To prevent a reduction of the address discharge characteristics without decrease the black luminance, the modified rising ramp reset waveform was adopted only in the sixth subfield. As a result, a modified driving method could improve the address discharge characteristics compared with selective reset driving scheme with almost the same black luminance.

Selective Reset Waveform using Wide Square Erase Pulse in an ac PDP (AC PDP에서의 대폭소거방식을 이용한 선택적 초기화 파형)

  • Jeong, Dong-Cheol;Whang, Ki-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2189-2195
    • /
    • 2007
  • In this paper, we propose a newly developed selective reset waveform of a ac PDP using the wide erase pulse technique with the control of address bias voltage. Although it is generally understood that the wide pulse erasing methode shows the narrow driving margin in an opposite discharge type ac PDP, we could obtain a moderate driving margin in a 3-electrode surface discharge type ac PDP. The obtained driving margin shows a strong dependency on the sustain voltage and the address bias voltage. The lower the sustain and the address bias voltage, the wider the driving margin. The pulse width of the proposed waveform is only $10{\mu}s$, which gives additional time to the sustain period, hence increases the brightness. The brightness and contrast ratio increase about 20% together comparing to the conventional ramp type selective reset waveform with the driving scheme of 10 subfield ADS method. The driving margin was measured with the line by line addressed pattern on the white test panel of 2inch diagonal size and the discharge gas was Ne+Xe4%, 400torr.