• Title/Summary/Keyword: Selective reflection

Search Result 65, Processing Time 0.046 seconds

Photochemical Modulation of Bragg-Reflection Wavelengths in Cholesteric Liquid Crystals Containing a Chiral Azobenzene

  • Lee, Hyoung-Kwan;Goo, Chul-Whoi;Tomiki Ikeda
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.41-54
    • /
    • 2000
  • Photochemical modulation of Bragg-reflection wavelengths based on isomerization of an azobenzene (Azo) and subsequent change in reflectance was investigated in cholesteric liquid crystals (ChLCs) which reflect light in visible wavelength region. Irradiation at 366 nm, which causes an efficient transcis isomerization of Azo, led to change in reflected color of ChLCs toward shorter wavelengths with a concomitant lowering of phase transition. Reversible change in color was induced all-optically by alternate irradiation at effective wavelengths for reversible isomerization of Azo. A considerable variation in reflectance was also observed when the photoinduced change in color was measured by a probe light with the same handedness as the ChLCs. The spectral Position of selective light reflection in the initial states played an important role to produce a normal-mode and a reverse-mode switching in photoinduced modulation of reflectance of the ChLCs with respect to the probe light.

  • PDF

Selective Transmission Properties of Al-Ti Based Oxide Thin Films (Al-Ti계 산화물 박막의 조성에 따른 선택적 투과 특성)

  • Bang, Ki Su;Jeong, So Un;Lim, Jung Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • It is expected that progress in building-integrated photovoltaic (BIPV) systems, improving the functionality and design of buildings, will be accelerated in the coming years. While the dye sensitized solar cell is considered one of the most important technologies in the BIPV field, the transparent silicon based thin film solar cell fabricated by thin film processes has drawn attention as a novel alternative. When the selective transmitting layer is applied to the solar cell, the conversion efficiency is improved due to the re-reflection of infrared light into an absorber layer with the transmission of visible light through the solar cell. In this work, we prepared Al-Ti based oxide thin films using cost-effective sputter deposition and examined their selective transmitting characteristics with various compositions. The transmittance and reflectance of the Al-Ti based oxide thin film changed with the variation of its composition, and the selective transmitting property was observed in the sample with the 25 nm-thick AlTiO layer. It is considered that the realization of transparent solar cells and the improvement of their conversion efficiency can be achieved by introducing the Al-Ti based selective transmitting layer.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

Design Fabrication and Tresting of Cholesteric Liquid Crystal Circular Polarizer (콜레스테릭 액정을 사용한 액정 원편광기의 설계, 및 제작 및 평가)

  • 공홍진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.168-172
    • /
    • 1993
  • We measured the spectral transmittance of the cholesteric mixtures of ZLI-1167 and CB15 for various weight fractions of CB15 in the mixture to find out the relationship between the center wavelength of the selective reflection band and the weight fraction of CB15 in the mixture. Left handed circular polarizer for 632.8 nm was designed and fabricated with this mixture whose weight fraction of CB15 was 33.19%. The ellipticity of the elliptical polarization of the transmitted light was measured to be 0.98 showing excellent property of the CLC circular polarizer.

  • PDF

Enhanced flexoelectric switching made from self-assembly of smectic liquid crystal and triallyl dopant

  • Lim, Tong-Kun;Lee, Ji-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-177
    • /
    • 2006
  • Here we report an enhanced flexoelectric switching in a self-assembled system of smectic liquid crystal and some specific dopant. The assembled unit block seemed to have electric dipole and as a result induces large flexoelectric polarization due to its asymmetric shape and shows fast switching to the electric field. The unit blocks are oriented in a helical fashion in the cell with large gap (${\sim}5{\mu}m$) and shows selective reflection property. In the thin cell (${\sim}2{\mu}m$), the unit blocks are aligned homeotropically on the bare ITO substrate with no surface treatment and shows fast decaying time.

  • PDF

AlTiO 선택적 투과막의 표면 평탄도 개선

  • Jeong, So-Un;Bang, Gi-Su;Kim, Ji-Hye;Im, Jeong-Uk;Lee, Seung-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.301-301
    • /
    • 2012
  • 지구 온난화와 화석 연료의 고갈이 심각해지면서 청정 에너지원으로서 신재생에너지에 대한 관심이 더욱 고조되고 있다. 신재생에너지 분야의 핵심기술의 하나인 태양전지의 여러 응용분야 중에서 건물 일체형 태양전지의 발전 가능성이 특히 높게 평가되고 있다. Si 계 박막 태양전지 내에 금속 산화물 계 선택적 투과막을 적용하면 선택적으로 적외선영역을 광흡수층으로 반사시키므로 건물 일체형 태양전지에 적용이 가능한 높은 변환효율의 투명 태양전지를 제조할 수 있다. 최근 연구 결과에 의하면 AlTiO 선택적 투과막의 투과율은 표면 평탄도에 의존하며, 타겟에 인가되는 전력을 감소시킴으로써 reactive co-sputtering 시 발생하는 아크 방전을 억제하면 AlTiO 박막의 평탄도가 개선된다는 사실이 알려져 있다. 본 연구에서는 AlTi single 타겟을 이용하여 AlTiO 박막을 형성함으로써 박막 표면을 더욱 개선시켜 가시광선 영역의 투과율을 향상시킨 결과를 보고한다.

  • PDF

Polymeric Wavelength Filter Based on a Bragg Grating Using Nanoimprint Technique (나노 임프린트 기술을 이용한 폴리머 도파로 기반의 브래그 격자형 파장 필터)

  • Ahn, Seh-Won;Lee, Ki-Dong;Kim, Do-Hwan;Chin, Won-Jun;Lee, Sang-Shin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.267-271
    • /
    • 2006
  • A polymeric waveguide-type wavelength filter based on a Bragg grating has been proposed and fabricated using the simple nanoimpring technique, for the first time to our knowledge. An ultraviolet transparent stamp with the single-mode waveguide pattern incorporating a surface-relief-type Bragg grating was specially designed selective dry-etching process. Using this stamp, the device fabrication was substantially involving just a single-step process of imprint followed by polymer spin-coating. The achieved maximum reflection was higher than 25 dB at the center wavelength of 1569 nm. And the 3-dB bandwidth was 0.8 nm for the device length of 1.5 cm.

Femtosecond nonlinear optical shift in photonic bandgapedges of a cholesteric liquid crystal (롤레스테릭 액정의 광결정 가장자리에서의 펨토초 비선형 광학 이동)

  • Jisoo Hwang;N. Y. Ha;H. J. Chang;Park, Byoungchoo;J. W. Wu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.164-165
    • /
    • 2003
  • A cholesteric liquid crystal (CLC) system exhibits one-dimensional (1-D) Photonic bandgap (PBG) characteristics in the transmission spectrum through a selective Bragg reflection. Related to the nonlinear optical (NLO) processes in a PBG structure of CLC, the inherent periodicity has been exploited to Phase-match the fundamental and the harmonic waves through the umklapp Processes. Near bandgap edges of a CLC, harmonic generations have been shown to be enhanced significantly through the field localization. (omitted)

  • PDF

Widely Tunable Coupled-ring Reflector Laser Diode Consisting of Square Ring Resonators

  • Kim, Su-Hyun;Byun, Young-Tae;Kim, Doo-Gun;Dagli, Nadir;Chung, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-41
    • /
    • 2010
  • We design and fabricate a widely tunable laser diode made of InGaAsP-InP. The diode is monolithically integrated with a wavelength-selective coupled-ring reflector and semiconductor amplifiers. For realization of a compact size device, deeply etched multi-mode interference couplers and square ring resonators composed of total-internal-reflection mirrors are adopted and fabricated using a self-aligned process. It is demonstrated that the laser diode exhibits single mode operation and 16 nm tuning range with side-mode-suppression-ratio exceeding 20 dB.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF