• 제목/요약/키워드: Selection of Motors

검색결과 45건 처리시간 0.019초

저압전동기 정격전압 선정기준 및 사례 연구 (A Guide to Selection of Voltages for Low Voltage Motors and Case Study)

  • 이민용;장중구;서상진
    • 전기기술인
    • /
    • 제235권3호
    • /
    • pp.35-41
    • /
    • 2002
  • 저압 동력설비는 사용하는 국내 수용가 혹은 산업플랜트에서는 주로 380V 전압을 채택하고 있다. 이는 전기사업법에서 저압의경우 표준 공급전압을 110V, 220V 및 380V로 정하여 놓고 있으며 3상 4선 방식에 의하여 동일 변압기를 이용 220V와 380V로 정하여 놓고 있으며 220V와 380V를 함께 공급할 수 있다는 장점이 있기 때문인 것으로 사료된다.

  • PDF

Optimal Voltage Vector Selection Method for Torque Ripple Reduction in the Direct Torque Control of Five-phase Induction Motors

  • Kang, Seong-Yun;Shin, Hye Ung;Park, Sung-Min;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1203-1210
    • /
    • 2017
  • This paper presents an improved switching selection method for the direct torque control (DTC) of five-phase induction motors (IMs). The proposed method is conducted using optimal switching selection. A five-phase inverter has 32 voltage vectors which are divided into 30 nonzero voltage vectors and two zero voltage vectors. The magnitudes of the voltage vectors consist of large, medium, and small voltage vectors. In addition, these vectors are related to the torque response and torque ripple. When a large voltage vector is selected in a drive system, the torque response time decreases with an increased torque ripple. On the other hand, when a small voltage vector is selected, the torque response time and torque ripple increase. As a result, this paper proposes an optimal voltage vector selection method for improved DTC of a five-phase induction machine depending on the situation. Simulation and experimental results verify the effectiveness of the proposed control algorithm.

Speed Control of Induction Motors using GA based PI Controller

  • Lee, Jae-Do;Lee, Hak-Ju;Oh, Sung-Up;Joo, Hyung-Jun;Seong, Se-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.404-408
    • /
    • 2001
  • This paper deals with speed control of induction motors with a gain tuning based on simple Genetic Algorithms, which are search algorithms based on the mechanics of natual selection and genetics. Based on the designed control system structure, the indirect vector control system of induction motors is simulated. The simulation results show that the system has a strong robust to the parameter variation and is insensitive to the load disturbance. Thus, the proposed PI controller based on genetic algorithms is superior to manually tuned classical PI controller in improving the speed control performance of induction motors.

  • PDF

유도전동기(誘導電動機)의 병렬운전(竝列運轉) System에서의 벡터제어(制御) (Field Oriented Control in Parallel Operation System of Induction Motors)

  • 김상훈
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.149-155
    • /
    • 1998
  • This paper describes a reference flux angle selection for a vector control in the parallel operation system that consists of a inverter and several induction motors. In particular, this paper suggests which flux angle of motors prefers for the vector control in the train drive system that diameters of wheels are different. Through simulation for a 210[kW] induction motor drive system, it is clear that the vector control by using of the flux angle of a motor having a minimum wheel diameter leads to a minimum torque difference. However, it requires too many current sensors. So, it is shown that the vector control by a average flux angle of motors is preferable.

  • PDF

고효율 모터 선정을 위한 전문가 시스템 (Expert System for Selection of Motor with High Efficiency)

  • 김광헌;임채권;이재신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.53-55
    • /
    • 1993
  • This paper describes the development of a software that has the man expert knowledge, experience and inference. This software is helpful for selecting the motors and driving systems which are best fit for the applications. Developed software can automatically select the most reasonable motor driving systems, only if a semi-skilled engineer inputs the performance criteria for the applications and mechanical data. Expert system inference engine and knowledge-base are implemented by C programming language. Data-base was implemented from manufacturer's catalogues for DC motors and brushless DC motors. Efficiencies of the various motor driving systems are compared reference on the average efficiency depends on the operating profiles. Developed expert system was tested in various of applications to verify the reliability, quick and easy selecting of the motor driving systems.

  • PDF

압축기용 단상 전동기의 회전자 자계구조 변경에 따른 성능에 관한 연구 (A Study on the Performance Improvement of Rotor Structure Modifications in Single-Phase Motors for Compressor Applications)

  • 정태욱
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.325-332
    • /
    • 2024
  • Contemporary power systems demand efficient and sustainable technologies. Single-phase induction motors, while widely used, face efficiency challenges due to inherent rotor losses. Proposed solutions include the Line-start Permanent Magnet Synchronous Motor (LSPMSM), leveraging permanent magnets for enhanced energy density but facing demagnetization and cost issues. Alternatively, the Line-start Synchronous Reluctance Motor (LSRM) operates as a hybrid motor without permanent magnets, reducing rotor losses and potentially improving efficiency. This paper focuses on designing an LSRM rotor for air conditioner compressors, analyzing start-up characteristics and efficiency through finite element analysis. A comparative study with single-phase induction motors provides insights for future motor technology selection, balancing efficiency and other requirements.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

전동식 조향장치용 영구자석형 브러시리스 모터의 타입별 특성 비교 (Characteristic Comparison of Brushless Motor Type for EPS System)

  • 이민환;김일용;이충성
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.53-60
    • /
    • 2012
  • As enforced by the regulation on the improving fuel efficiency and increased the demand on green technology, many interests are focused on electric vehicles and hybrid vehicles. Thus the technology development in electrification of vehicle operation system, including steering and braking field, is actively progressive. Especially electric power steering substitutes for hydraulic power steering rapidly in the market, which is more complex and bigger in packaging volume compared with electric power steering system. The core component in electric power steering system is a motor, which is required to be silent and powerful to guarantee required system performance. Brushless synchronous motors are widely used and many variations of the motors are introduced in the market, while the performance of each type is not well defined or studied for electric power steering system. In this paper, recent developments in brushless synchronous motor are reviewed and compared applying finite element analysis in electromagnetic field. As results, each characteristic of different types of brushless synchronous motors is compared and summarized for optimized selection in electric power steering system.

3레벨 인버터로 구동되는 유도전동기 직접토크제어의 저속성능 개선 (An Improvement on low Speed Operation Performances of DTC for 3-level Inverter-fed Induction Motors)

  • 이교범;송중호;최익;김광배;유지윤
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권10호
    • /
    • pp.693-700
    • /
    • 2000
  • A direct torque control algorithm for 3-level inverter-fed induction motors is presented. Conventional voltage selection methods provoke some problems such as stator flux drooping phenomenon and undersirable torque control appeared especially at the low speed operation. To overcome these problems, a proposed method uses intermediate voltage vectors, which are inherently generated in 3-level inverters. In the proposed algorithm, both subdivision of the basic switching sectors and applications of tntermediated voltages improve the low speed operation characteristics. This algorithm basically considers applications in which direct torque controlled induction motors are fed by 3-level inverters with low switching frequency around 500Hz. An adaptive observer is also employed to bring better responses at the low speed operation, by estimating some state-variables, motor speed and motor parameters which take a deep effect on the performance of the low speed operation. Simulation and experiment results verify effectiveness of the proposed algorithm.

  • PDF