• 제목/요약/키워드: Selection Tool

검색결과 833건 처리시간 0.026초

사출금형 CAM 작업 지원용 공구 항목 추천 시스템 개발 (Development of Tool Item Selection System Aiding CAM Procedure for Injection Mold)

  • 김성근;양학진;허영무;양진석
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.118-125
    • /
    • 2003
  • As consumer's desire becomes various, agility of mold manufacturing is the most important factor for competitive mold manufacturer. Decision making process is required to produce optimal result of CAM systems in using commercial CAM system to generate tool path. The paper proposes a methodology fur computer-assisted tool selection procedures for various cutting type of rough, semi-rough and finish cuts. The procedure provides assistance for machining tool selection by analyzing sliced CAD model section of die cavity and core. Information about machining time for the generated NC-code is used to aid the tool selection. The module is developed with commercial CAM API. This module will be used fur the optimization of tool selection and planning process.

FMS에서의 생산비용 최소화를 위한 공구 결정 및 공구로우딩-부품 할당 기법 (A Tool Selection and Tool Loading-Part Assignment Procedure to Minimize Operation Costs in FMS)

  • 나윤균;이동하
    • 산업경영시스템학회지
    • /
    • 제23권58호
    • /
    • pp.17-27
    • /
    • 2000
  • In FMS where tool movement policy is adopted, a mathematical model has been developed which determines the selection of a tool type for each operation and tool loading-part assignment simultaneouly. The objective is to minimize the total cost of operation including machining time cost, tool cost, tool replacement and loading time cost, and tool change time cost. Due to the complexity of the problem, an approximate solution procedure has been developed utilizing the special structure of the model. Tool selection was determined first to allocate one tool type to each operation considering more than one tool type alternatives for each operation. Tool loading-part assignment was determined to minimize tile total number of tool changes due to part mix based on the tool selection.

  • PDF

사출금형 형상부 가공을 위한 공구 선정 시스템 개발 (Development of Tool selection System for Machining Model Part of Injection Mold)

  • 양학진;김성근;허영무;양진석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.569-574
    • /
    • 2002
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems, The paper proposes a methodology for computer-assisted tool selection procedures for various cutting type, such as rough, semi-rough and finish cuts. The system provides assist-tool-items for machining of design model part of injection meld die by analyzing sliced CAD model of die cavity and core. Also, the generating NC-code of the tool size is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

사출금형 CAM 작업 지원용 공구 선정 시스템 개발 (Development of Tool Selection System Aiding CAM Works for Injection Mold)

  • 양학진;김성근;허영무;양진석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.175-179
    • /
    • 1997
  • As consumer's desire becomes various, agility of mold manufacturing is most important factor for competence of manufacturer. In common works to use commercial CAM system to generate tool path, some decision making process is required to produce optimal result of CAM systems. We propose tool selection procedures to aid the decision making process. The system provides available tool size for machining of design model part of injection mold die by analyzing sliced CAD model of die cavity and core. Also, the tool size information is used to calculate machining time. The system is developed with commercial CAM using API. This module will be used for optimization of tool selection and planning process.

  • PDF

포켓형상가공을 위한 최적공구 선정방법 (An Optimal Tool Selection Method for Pocket Machining)

  • 경영민;조규갑;전차수
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.49-58
    • /
    • 1997
  • In process planning for pocket machining, the selection of tool size, tool path, overlap distance, and the calculation of machining time are very important factors to obtain the optimal process planning result. Among those factors, the tool size is the most important one because the others depend on tool size. And also, it is not easy to determine the optimal tool size even though the shape of pocket is simple. Therefore, the optimal selection of tool size is the most essential task in process planning for machining a pocket. This paper presents a method for selecting optimal toos in pocket machining. The branch and bound method is applied to select the optimal tools which minimize the machining time by using the range of feasible tools and the breadth-first search.

  • PDF

3차원 포켓가공을 위한 절삭층 형성 및 공구선정 (Generation of Cutting Layers and Tool Selection for 3D Pocket Machining)

  • 경영민;조규갑
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.101-110
    • /
    • 1998
  • In process planning for 3D pocket machining, the critical issues for the optimal process planning are the generation of cutting layers and the tool selection for each cutting layers as well as the other factors such as the determination of machining types, tool path, etc. This paper describes the optimal tool selection on a single cutting layer for 2D pocket machining, the generation of cutting layers for 3D pocket machining, the determination of the thickness of each cutting layers, the determination of the tool combinations for each cutting layers and also the development of an algorithm for determining the machining sequence which reduces the number of tool exchanges, which are based on the backward approach. The branch and bound method is applied to select the optimal tools for each cutting layer, and an algorithmic procedure is developed to determine the machining sequence consisting of the pairs of the cutting layers and cutting tools to be used in the same operation.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

절삭 공구 자동 선정 프로그램 개발 (Development of Automatic Cutting Tool Selection Program)

  • 김영진
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.177-182
    • /
    • 1998
  • The computer related techniques have been developed rapidly in the field of metal removal industry. The electronic catalog for mechanical elements is one of such developments realized in recent years. As the emergence of the electronic catalogs in the 90s, it breaks the restriction of the traditional catalog and becomes a helpful and efficient tool in the field. In this paper, we develop an electronic catalog for the cutting tools of the Korea Tungsten Co. Ltd. The catalog consists of three parts: a preprocessor for tool selection, a database for tool, and a postprocessor for search result. A preprocessor for tool selection is developed under a user-friendly consideration. A database for tool consists of milling, drilling, and reaming tools with a list of cutters, inserts, and components. A postprocessor for search result consists of weight, dimension. drawing, product order number etc. of the tools. It also suggests the optimized cutting condition of the selected tool using a neural network technique which is done by an independent research group.

  • PDF

NC 판금작업에서의 자동 공구선정 (Automatic Tool Selection in Numerically Controlled Sheet Metal Fabrication)

  • 조경호;이건우
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.696-706
    • /
    • 1992
  • 본 연구에서는 공구선정 작업의 자동화를 목표로 하였다.공구선정을 완전 자동으로 행하기 위해 해결해야 할 문제는, 현재 공구대(turret)에 장착되어 있는 공 구중에서 어떤 공구를 얼마칸큼 직선, 회전 이동시키면 판재 경계와 정확하게 일치하 는가 하는 문제와, 복잡한 형상의 펀칭을 위해선 효과적인 공구조합은 어떻게 해야하 나 하는 문제로 귀결되므로 이 두가지 문제의 해결방안을 기술한다.

선삭공정에 있어서 공구선택용 전문가 시스템의 개발 (Development of Expert System for Tool Selection on Turning Operation)

  • 백인환;권혁준
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.53-60
    • /
    • 1992
  • This paper deals with developing an Expert system for tool selection using knowledge base system approach, and its application. For the sake of building of knowledge base, the information from process through sensor, tool handbook and interview with expert are referrenced and managed. The system developed shows good application flexibility in providing the actual cutting process with the selection of tool(insert, holder) and cutting conditions(feed, speed, rake type, and so on), is found as a useful system for real-time machining process. The Expert system for tool selection is written in TURBO PROLOG ver. 2.0 for inference engine capability, and can be run in interactive mode for user friendliness. In order to apply the system developed in actual cutting process, more parameters should be considered and scrutinized, and the system should be further extended in modular basis.

  • PDF