• Title/Summary/Keyword: Selected attributes

Search Result 468, Processing Time 0.025 seconds

The Influence of Number of Targets on Commonness Knowledge Generation and Brain Activity during the Life Science Commonness Discovery Task Performance (생명과학 공통성 발견 과제 수행에서 대상의 수가 공통성 지식 생성과 뇌 활성에 미치는 영향)

  • Kim, Yong-Seong;Jeong, Jin-Su
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.157-172
    • /
    • 2019
  • The purpose of this study is to analyze the influence of number of targets on common knowledge generation and brain activity during the common life science discovery task performance. In this study, 35 preliminary life science teachers participated. This study was intentionally made a block designed for EEG recording. EEGs were collected while subjects were performing common discovery tasks. The sLORETA method and the relative power spectrum analysis method were used to analyze the brain activity difference and the role of activated cortical and subcortical regions according to the degree of difficulty of common discovery task. As a result of the study, in the case of the Theta wave, the activity of the Theta wave was significantly decreased in the frontal lobe and increased in the occipital lobe when the difficult difficulty task was compared with the easy difficulty task. In the case of Alpha wave, the activity of Alpha decreased significantly in the frontal lobe when performing difficult task with difficulty. Beta wave activity decreased significantly in the frontal lobe, parietal lobe, and occipital lobe when performing difficult task. Finally, in the case of Gamma wave, activity of Gamma wave decreased in the frontal lobe and activity increased in the parietal lobe and temporal lobe when performing the difficult difficulty task compared to the task of easy difficulty. The level of difficulty of the commonality discovery task is determined by the cingulate gyrus, the cuneus, the lingual gyrus, the posterior cingulate, the precuneus, and the sub-gyral where it was shown to have an impact. Therefore, the difficulty of the commonality discovery task is the process of integrating the visual information extracted from the image and the location information, comparing the attributes of the objects, selecting the necessary information, visual work memory process of the selected information. It can be said to affect the process of perception.

An Analysis of the Trends in Academic Research on Invention Gifted Education (발명영재교육에 관한 학술연구 동향 분석)

  • Lee Minhye;Hillenblink Maximilian Ludwig
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.3 no.1
    • /
    • pp.1-28
    • /
    • 2023
  • This study was conducted to examine the quantitative trend of domestic studies in invention gifted education, identify the intrinsic meaning and connection attributes in these research analysis, and provide basic data to explore future development plans. To this end, 97 domestic academic papers were finally selected as "Invention Gifted Education" by the Korea Research and Information Service (RISS), technical statistical analysis was conducted with SPSS on publication year, author composition, researcher's affiliation and location area, and published journal. The trend, which had been on the rise since 2007, confirmed by academic papers on gifted education in invention, peaked at the time of the 3rd comprehensive plan for gifted education and has since declined again. As a result of technical statistical analysis of the author's characteristics, half of the papers were jointly published, followed by a number of independent authors. The papers published alone were identified as belonging to universities, research institutes, elementary schools, and middle schools, and the cooperative papers were many studies cooperated with young researchers and professional researchers, and only one collaborative study was conducted between young researchers. When looking at the regions and journals in which the Invention Gifted Education thesis was published, it was concentrated in some regions or journals, and the deviation was very large. As a result of language network analysis using academic paper keywords, creativity and programs were identified as meaningful keywords that showed top appearance, and the keyword pair with high co-appearance was invention gifted-creativity. The keyword of connection-centeredness at the top served as an intermediary for creativity, problem-solving, development, and company to expand to other research topics, and served as a research topic that could be expanded to various topics. In the case of mediation-centeredness, creativity, programs, and effects showed high mediation-centeredness, indicating that it is an important keyword that plays a role in mediating or mediating other keywords. Through these research results, national policy measures need to be prepared for the development of gifted education, and the need to create an invention ecological culture that can enhance teachers' expertise while increasing social responsibility for gifted education.

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

Spatial Distribution of Benthic Macroinvertebrate Assemblages in Wetlands of Jeju Island, Korea (제주도 일대 습지에 서식하는 저서성 대형무척추동물의 군집 분포 특성)

  • Yung Chul Jun;Seung Phil Cheon;Mi Suk Kang;Jae Heung Park;Chang Su Lee;Soon Jik Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Most wetlands worldwide have suffered from extensive human exploitation. Unfortunately they have been less explored compared to river and lake ecosystems despite their ecological importance and economic values. This is the same case in Korea. This study was aimed to estimate the assemblage attributes and distribution characteristics of benthic macroinvertebrates for fifty wetlands distributed throughout subtropical Jeju Island in 2021. A total of 133 taxa were identified during survey periods belonging to 53 families, 19 orders, 5 classes and 3 phyla. Taxa richness ranged from 4 to 31 taxa per wetland with an average of 17.5 taxa. Taxa richness and abundance of predatory insect groups such as Odonata, Hemiptera and Coleoptera respectively accounted for 67.7% and 68.2% of the total. Among them Coleoptera were the most diverse and abundant. Taxa richness and abundance did not significantly differ from each wetland type classified in accordance with the National Wetland Classification System. There were three endangered species (Clithon retropictum, Lethocerus deyrolli and Cybister (Cybister) chinensis) and several restrictively distributed species only in Jeju Island. Cluster analysis based on the similarity in the benthic macroinvertebrate composition largely classified 50 wetlands into two major clusters: small wetlands located in lowland areas and medium-sized wetlands in middle mountainous regions. All cluster groups displayed significant differences in wetland area, long axis, percentage of fine particles and macrophyte composition ratio. Indicator Species Analysis selected 19 important indicators with the highest indicator value of Ceriagrion melanurum at 63%, followed by Noterus japonicus (59%) and Polypylis hemisphaerula (58%). Our results are expected to provide fundamental information on the biodiversity and habitat environments for benthic macroinvertebrates in wetland ecosystems, consequently helping to establish conservation and restoration plans for small wetlands relatively vulnerable to human disturbance.

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

The Effect of Price Discount Rate According to Brand Loyalty on Consumer's Acquisition Value and Transaction Value (브랜드애호도에 따른 가격할인율의 차이가 소비자의 획득가치와 거래가치에 미치는 영향)

  • Kim, Young-Ei;Kim, Jae-Yeong;Shin, Chang-Nag
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.247-269
    • /
    • 2007
  • In recent years, one of the major reasons for the fierce competition amongst firms is that they strive to increase their own market shares and customer acquisition rate in the same market with similar and apparently undifferentiated products in terms of quality and perceived benefit. Because of this change in recent marketing environment, the differentiated after-sales service and diversified promotion strategies have become more important to gain competitive advantage. Price promotion is the favorite strategy that most retailers use to achieve short-term sales increase, induce consumer's brand switch, in troduce new product into market, and so forth. However, if marketers apply or copy an identical price promotion strategy without considering the characteristic differences in product and consumer preference, it will cause serious problems because discounted price itself could make people skeptical about product quality, and the changes of perceived value might appear differently depending on other factors such as consumer involvement or brand attitude. Previous studies showed that price promotion would certainly increase sales, and the discounted price compared to regular price would enhance the consumer's perceived values. On the other hand, discounted price itself could make people depreciate or skeptical about product quality, and reduce the consumers' positivity bias because consumers might be unsure whether the current price promotion is the retailer's best price offer. Moreover, we cannot say that discounted price absolutely enhances the consumer's perceived values regardless of product category and purchase situations. That is, the factors that affect consumers' value perceptions and buying behavior are so diverse in reality that the results of studies on the same dependent variable come out differently depending on what variable was used or how experiment conditions were designed. Majority of previous researches on the effect of price-comparison advertising have used consumers' buying behavior as dependent variable. In order to figure out consumers' buying behavior theoretically, analysis of value perceptions which influence buying intentions is needed. In addition, they did not combined the independent variables such as brand loyalty and price discount rate together. For this reason, this paper tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception. And we provided with theoretical and managerial implications that marketers need to consider such variables as product attributes, brand loyalty, and consumer involvement at the same time, and then establish a differentiated pricing strategy case by case in order to enhance consumer's perceived values properl. Three research concepts were used in our study and each concept based on past researches was defined. The perceived acquisition value in this study was defined as the perceived net gains associated with the products or services acquired. That is, the perceived acquisition value of the product will be positively influenced by the benefits buyers believe they are getting by acquiring and using the product, and negatively influenced by the money given up to acquire the product. And the perceived transaction value was defined as the perception of psychological satisfaction or pleasure obtained from taking advantage of the financial terms of the price deal. Lastly, the brand loyalty was defined as favorable attitude towards a purchased product. Thus, a consumer loyal to a brand has an emotional attachment to the brand or firm. Repeat purchasers continue to buy the same brand even though they do not have an emotional attachment to it. We assumed that if the degree of brand loyalty is high, the perceived acquisition value and the perceived transaction value will increase when higher discount rate is provided. But we found that there are no significant differences in values between two different discount rates as a result of empirical analysis. It means that price reduction did not affect consumer's brand choice significantly because the perceived sacrifice decreased only a little, and customers are satisfied with product's benefits when brand loyalty is high. From the result, we confirmed that consumers with high degree of brand loyalty to a specific product are less sensitive to price change. Thus, using price promotion strategy to merely expect sale increase is not recommendable. Instead of discounting price, marketers need to strengthen consumers' brand loyalty and maintain the skimming strategy. On the contrary, when the degree of brand loyalty is low, the perceived acquisition value and the perceived transaction value decreased significantly when higher discount rate is provided. Generally brands that are considered inferior might be able to draw attention away from the quality of the product by making consumers focus more on the sacrifice component of price. But considering the fact that consumers with low degree of brand loyalty are known to be unsatisfied with product's benefits and have relatively negative brand attitude, bigger price reduction offered in experiment condition of this paper made consumers depreciate product's quality and benefit more and more, and consumer's psychological perceived sacrifice increased while perceived values decreased accordingly. We infer that, in the case of inferior brand, a drastic price-cut or frequent price promotion may increase consumers' uncertainty about overall components of product. Therefore, it appears that reinforcing the augmented product such as after-sale service, delivery and giving credit which is one of the levels consisting of product would be more effective in reality. This will be better rather than competing with product that holds high brand loyalty by reducing sale price. Although this study tried to examine the moderating effect of brand loyalty on relationship between the different levels of discounting rate and buyers' value perception, there are several limitations. This study was conducted in controlled conditions where the high involvement product and two different levels of discount rate were applied. Given the presence of low involvement product, when both pieces of information are available, it is likely that the results we have reported here may have been different. Thus, this research results explain only the specific situation. Second, the sample selected in this study was university students in their twenties, so we cannot say that the results are firmly effective to all generations. Future research that manipulates the level of discount along with the consumer involvement might lead to a more robust understanding of the effects various discount rate. And, we used a cellular phone as a product stimulus, so it would be very interesting to analyze the result when the product stimulus is an intangible product such as service. It could be also valuable to analyze whether the change of perceived value affects consumers' final buying behavior positively or negatively.

  • PDF